No access
Point/Counterpoint
December 2005

The Importance of Modality Specificity in Diagnosing Central Auditory Processing Disorder

Publication: American Journal of Audiology
Volume 14, Number 2
Pages 112-123

Abstract

Purpose: This article argues for the use of modality specificity as a unifying framework by which to conceptualize and diagnose central auditory processing disorder (CAPD). The intent is to generate dialogue and critical discussion in this area of study.
Method: Research in the cognitive, behavioral, and neural sciences that relates to the concept of modality specificity was reviewed and synthesized.
Results: Modality specificity has a long history as an organizing construct within a diverse collection of mainstream scientific disciplines. The principle of modality specificity was contrasted with the unimodal inclusive framework, which holds that auditory tests alone are sufficient to make the CAPD diagnosis. Evidence from a large body of data demonstrated that the unimodal framework was unable to delineate modality-specific processes from more generalized dysfunction; it lacked discriminant validity and resulted in an incomplete assessment. Consequently, any hypothetical model resulting from incomplete assessments or potential therapies that are based on indeterminate diagnoses are themselves questionable, and caution should be used in their application.
Conclusions: Improving specificity of diagnosis is an imperative core issue to the area of CAPD. Without specificity, the concept has little explanatory power. Because of serious flaws in concept and design, the unimodal inclusive framework should be abandoned in favor of a more valid approach that uses modality specificity.

Get full access to this article

View all available purchase options and get full access to this article.

References

Adams, R. D., & Victor, M. (1989). Principals of neurology (4th ed.). New York: McGraw-Hill.
American Speech-Language-Hearing Association. (1996). Central auditory processing: Current status of research and implications for clinical practice. American Journal of Audiology, 5(2), 41–53.
American Speech-Language-Hearing Association. (2005). (Central) auditory processing disorders. Available from http://www.asha.org/members/deskref-journals/deskref/default.
Aristotle. (1951). De Anima (K. Foster & S. Humphries, Trans.). New Haven, CT: Yale University Press.
Baddeley, A. (1976). The psychology of memory. New York: Basic Books.
Barsalou, L. W., Simmons, W. K., Barbey, A. K., & Wilson, C. D. (2003). Grounding conceptual knowledge in modality-specific systems. Trends in Cognitive Sciences, 7, 84–91.
Belin, P., Fecteau, S., & Bedard, C. (2004). Thinking the voice: Neural correlates of voice perception. Trends in Cognitive Sciences, 8, 129–135.
Bellis, T. J., & Ferre, J. M. (1999). Multidimensional approach to the differential diagnosis of central auditory processing disorders in children. Journal of the American Academy of Audiology, 10, 319–328.
Berlin, C. I., & Lowe, S. S. (1972). Temporal and dichotic factors in central auditory testing. In J. Katz (Ed.), Handbook of clinical audiology (pp. 280–312). Baltimore: Williams & Wilkins.
Bernstein, L. E., Auer, E. T., & Moore, J. K. (2004). Audiovisual speech binding: Convergence or association? In G. A. Calvert, C. Spence, & B. E. Stein (Eds.), The handbook of multisensory processing (pp. 203–223). Cambridge, MA: MIT Press.
Bernstein, L. E., Auer, E. T., Moore, J. K., Ponton, C. W., & Don, M. (2002). Visual speech perception without primary auditory cortex activation. NeuroReport, 13, 311–315.
Booth, J. R., Burman, D. D., Meyer, J. R., Gitelman, D. R., Parrish, T. B., & Mesulam, M. M. (2002). Modality independence of word comprehension. Human Brain Mapping, 16, 251–261.
Boring, E. G. (1950). A history of experimental psychology. New York: Appleton-Century-Crofts.
Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436.
Bright, P., Moss, H., & Tyler, L. K. (2004). Unitary vs. multiple semantics: PET studies of word and picture processing. Brain and Language, 89, 417–432.
Cacace, A. T., & McFarland, D. J. (1992). Acoustic pattern recognition and short-term memory in normal adults and young children. Audiology, 31, 334–341.
Cacace, A. T., & McFarland, D. J. (1998). Central auditory processing disorder in school aged children: A critical review. Journal of Speech, Language, and Hearing Research, 41, 355–373.
Cacace, A. T., & McFarland, D. J. (in press). Delineating auditory processing disorder (APD) and attention deficit hyperactivity disorder (ADHD): A conceptual, theoretical and practical framework. In T. K. Pathasarathy (Ed.), An introduction to auditory processing disorders in children. Mahwah, NJ: Erlbaum.
Cacace, A. T., McFarland, D. J., Emrich, J. F., & Haller, J. S. (1992). Assessing short-term recognition memory with forced-choice psychophysical methods. Journal of Neuroscience Methods, 44, 145–155.
Cacace, A. T., McFarland, D. J., Ouimet, J. R., Schrieber, E. J., & Marro, P. (2000). Temporal processing deficits in remediation-resistant reading-impaired children. Audiology & Neuro-Otology, 5, 83–97.
Cajal, R. (1988). On the cerebral cortex (J. DeFelipe & E. G. Jones, Trans.) New York: Oxford University Press.
Calvert, G. A., Bullmore, E. T., Brammer, M. J., Campbell, R., Williams, S. C., McGuire, P. K.et al. (1997). Activation of auditory cortex during silent lipreading. Science, 276, 593–596.
Campbell, D. T., & Fisk, D. W. (1959). Convergent and discriminant validation by the multitrait-multimethod matrix. Psychological Bulletin, 56, 1–21.
Chung, S. T. L., Levi, D. M., Legge, G. E., & Tjan, B. S. (2002). Spatial-frequency properties of letter identification in amblyopia. Vision Research, 42, 1571–1581.
Colombo, M., Rodman, H. R., & Gross, C. G. (1996). The effects of superior temporal cortex lesions on the processing and retention of auditory information in monkeys (Cebus apella). Journal of Neuroscience, 16, 4501–4517.
Cowan, N. (1984). On short and long auditory stores. Psychological Bulletin, 96, 341–370.
Cowan, N. (1988). Evolving conceptions of memory storage, selective attention, and their mutual constraints within the human information-processing system. Psychological Bulletin, 104, 163–191.
De Gelder, B., & Vroomen, J. (1994). A new place for modality in a modular mind. Cahiers de Psychologie Cognitive, 13, 84–91.
Dunn, J. C., & Kirsner, K. (2003). What can we infer from double dissociations? Cortex, 39, 1–7.
Farah, M. J. (1994). Neuropsychological inference with an interactive brain: A critique of the locality assumption. Behavioral and Brain Sciences, 17, 43–104.
Fodor, J. (1983). The modularity of mind. Cambridge, MA: MIT Press.
Fodor, J. (1985). Précis of The modularity of mind. Behavioral and Brain Sciences, 8, 1–42.
Friel-Patti, S. (1999). Clinical decision-making in the assessment and intervention of central auditory processing disorders. Language, Speech, and Hearing Services in Schools, 30, 345–352.
Grant, K. W., & Greenberg, S. (2001). Speech intelligibility derived from asynchronous processing of auditory-visual information. In Proceedings of the International Conference on Audiology-Visual Speech Processing (pp. 132–137). Santa Cruz, CA: Perceptual Science Laboratory.
Grant, K. W., van Wassenhove, V., & Poeppel, D. (2004). Detection of auditory (cross-spectral) and auditory-visual (cross-modal) synchrony. Speech Communication, 44, 43–53.
Green, D. M., & Swets, J. A. (1974). Signal detection theory and psychophysics. New York: Wiley.
Harley, E. M., & Loftus, G. R. (2000). MATLAB and graphical user interfaces: Tools for experimental management. Behavioral Research Instrumentation & Computing, 32, 290–296.
Hodgson, W. R. (1972). Filtered speech tests. In J. Katz (Ed.), Handbook of clinical audiology (pp. 313–324). Baltimore: Williams & Wilkins.
Hubel, D. H., & Wiesel, T. N. (1977). Functional architecture of macaque monkey visual cortex [Review]. Proceedings of the Royal Society of London B 198, 1–59.
Humes, L. E. (2005). Do “auditory processing” tests measure auditory processing in the elderly? Ear & Hearing, 26, 109–119.
Imig, T. J., & Adrián, H. O. (1977). Binaural columns in the primary auditory field (A1) of cat auditory cortex. Brain Research, 138, 241–257.
Jerger, J., & Musiek, F. (2000). Report of the consensus conference on the diagnosis of auditory processing disorders in school-aged children. Journal of the American Academy of Audiology, 11, 467–474.
Jerger, J., Weikers, N. J., Sharbrough, F. W. III, & Jerger, S. (1969). Bilateral lesions of the temporal lobe: A case study. Acta Oto-Laryngologica Supplementum, 258, 1–51.
Kaas, J. H., & Pons, T. P. (1988). The somatosensory system of primates. In H. D. Steklis & J. Erwin (Eds.), Neurosciences (pp. 421–468). New York: Alan R. Liss.
Keith, R. W. (1986). SCAN: A screening test for auditory processing disorders. San Antonio, TX: The Psychological Corporation.
Keith, R. W. (1999). Clinical issues in central auditory processing disorders. Language, Speech, and Hearing Services in Schools, 30, 339–344.
Krieg, W. J. (1966). Functional neuroanatomy (3rd ed.). Evanston, IL: Brain Books.
Lashley, K. (1931). Mass action and cerebral function. Science, 73, 245–254.
Lyons, J. (2003). Lesion studies, spared performance, and cognitive systems. Cortex, 39, 145–147.
Macaluso, E., George, N., Dolan, R., Spence, C., & Driver, J. (2004). Spatial and temporal factors during processing of audiovisual speech: A PET study. NeuroImage, 21, 725–732.
Macko, K. A., Jarvis, C. D., Kennedy, C., Miyaoka, M., Shinohara, M., Sokoloff, L., & Mishkin, M. (1982). Mapping the primate visual system with [2-14C]Deoxyglucose. Science, 218, 394–397.
Mason, C., & Kandel, E. R. (1991). Central visual pathways. In E. R. Kandel, J. H. Schwartz, & T. M. Jessell (Eds.), Principles of neural science (3rd ed., pp. 420–439). New York: Elsevier.
McFall, R. M., & Treat, T. A. (1999). Quantifying the information value of clinical assessments with signal detection theory. Annual Review of Psychology, 50, 215–241.
McFarland, D. J., & Cacace, A. T. (1992). Aspects of short-term acoustic recognition memory: Modality and serial position effects. Audiology, 31, 342–352.
McFarland, D. J., & Cacace, A. T. (1995a). Comparisons of memory for nonverbal auditory and visual sequential stimuli. Psychological Research, 57, 80–87.
McFarland, D. J., & Cacace, A. T. (1995b). Modality specificity as a criterion for diagnosing central auditory processing disorders. American Journal of Audiology, 4(3), 36–48.
McFarland, D. J., & Cacace, A. T. (1997). Modality specificity of auditory and visual pattern recognition: Implications for the assessment of central auditory processing disorders. Audiology, 36, 249–260.
McFarland, D. J., & Cacace, A. T. (in press). Controversial issues in CAPD: From Procrustes’ bed to Pandora’s box. In T. K. Pathasarathy (Ed.), An introduction to auditory processing disorders in children. Mahwah, NJ: Erlbaum.
McFarland, D. J., Cacace, A. T., & Setzen, G. (1998). Temporal-order discrimination for selected auditory and visual stimulus dimensions. Journal of Speech, Language, and Hearing Research, 41, 300–314.
McGurk, H., & MacDonald, J. (1976). Hearing lips and seeing voices. Nature, 264, 746–748.
Meister, H., von Wedel, H., & Walger, M. (2004). Psychometric evaluation of children with suspected auditory processing disorders (APDs) using a parent-answered survey. International Journal of Audiology, 43, 431–437.
Merzenich, M. M., & Brugge, J. F. (1973). Representation of the cochlear partition on the superior temporal plane of the macaque monkey. Brain Research, 50, 275–296.
Merzenich, M. M., Colwell, S. A., & Andersen, R. A. (1982). Auditory forebrain organization: Thalamocortical and corticothalamic connections in the cat. In C. N. Woolsey (Ed.), Cortical sensory organization, Vol. 3: Multiple auditory areas (pp. 43–57). Clifton, NJ: Humana Press.
Merzenich, M. M., Knight, P. L., & Roth, G. L. (1975). Representation of the cochlear partition within primary auditory cortex of the cat. Journal of Neurophysiology, 38, 231–249.
Mesulam, M. M. (1998). From sensation to cognition. Brain, 121, 1013–1052.
Mountcastle, V. B. (1984). Central nervous system mechanisms of mechanoreceptive sensibility. In S. R. Geiger (Exec. Ed.), J. M. Brookhart & V. B. Mountcastle (Sect. Eds.), & I. Darian-Smith (Vol. Ed.), Handbook of physiology: Sect. 1. The nervous system. Vol. 3. Sensory processes(pp. 789–878). Bethesda, MD: American Physiological Society.
Mountcastle, V. B. (1997). The columnar organization of neocortex. Brain, 120, 701–722.
Pekkola, J., Ojanen, V., Autti, T., Jaaskelainen, I. P., Mottonen, R. M., Tarkiainen, A., & Sams, M. (2005). Primary auditory cortex activation by visual speech: An fMRI study at 3T. NeuroReport, 16, 125–128.
Pelli, D. G., Levi, D. M., & Chung, S. T. L. (2004). Using visual noise to characterize amblyopic letter identification. Journal of Vision, 4, 904–920.
Polster, M. R., & Rose, S. B. (1998). Disorders of auditory processing: Evidence for modularity in audition. Cortex, 34, 47–65.
Poremba, A., Saunders, R. C., Crane, A. M., Cook, M., Sokoloff, L., & Mishkin, M. (2003). Functional mapping of the primate auditory system. Science, 299, 568–572.
Pourtois, G., de Gelder, B., Bol, A., & Crommelinck, M. (2005). Perception of facial expressions and voices and of their combination in the human brain. Cortex, 41, 49–59.
Powell, T. P. S., & Mountcastle, V. B. (1959). Some aspects of the functional organization of the cortex of the postcentral gyrus of the monkey: A correlation of findings obtained in a single unit analysis with cytoarchitecture. Bulletin of the John Hopkins Hospital, 105, 133–162.
Razak, K., & Fuzessary, Z. (2000). A systematic representation of interaural intensity differences in the auditory cortex of the pallid bat. NeuroReport, 11, 2919–2924.
Salvi, R. J., Lockwood, A. H., Frisina, R. D., Coad, M. L., Wack, D. S., & Frisina, D. R. (2002). PET imaging of the normal human auditory system: Responses to speech in quiet and in background noise. Hearing Research, 170, 96–106.
Schacter, D. L., Dobbins, I. G., & Schnyer, D. M. (2004). Specificity of priming: A cognitive neuroscience perspective. Nature Reviews Neuroscience, 5, 353–362.
Schreiner, C., Read, H. L., & Sutter, M. (2000). Modular organization of frequency integration in primary auditory cortex. Annual Review of Neuroscience, 23, 501–529.
Schwartz, J. L., Berthommier, F., & Savarizux, C. (2004). Seeing to hear better: Evidence for early audio-visual interactions in speech identification. Cognition, 93, B69–B78.
Sekiyama, K., Kanno, I., Miura, S., & Sugita, Y. (2003). Auditory-visual speech perception examined by fMRI and PET. Neuroscience Research, 47, 277–287.
Setzen, G., Cacace, A. T., Eames, F., Riback, P., Lava, N., McFarland, D. J., et al. (1999). Central deafness in a young child with Moyamoya disease: Paternal linkage in a Caucasian family: Two case reports and a review of the literature. International Journal of Pediatric Otorhinolaryngology, 48, 53–76.
Shams, L. (2002). Integration in the brain. Science & Consciousness Review, 1, 1–4.
Shimojo, S., & Shams, L. (2001). Sensory modalities are not separate modalities: Plasticity and interactions. Current Opinion in Neurobiology, 11, 505–509.
Silipo, R., Greenberg, S., & Arai, T. (1999). Temporal constraints on speech intelligibility as deduced from exceedingly sparse spectral representations. In Proceedings of Eurospech 1999 (pp. 2687–2690). Budapest, Hungary.
Singer, J., Hurley, R. M., & Preece, J. P. (1998). Effectiveness of central auditory processing tests with children. American Journal of Audiology, 7(2), 73–84.
Sumby, W. H., & Pollack, I. (1954). Visual contribution to speech intelligibility in noise. Journal of the Acoustical Society of America, 226, 212–215.
Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science, 240, 1285–1293.
Tattersall, A. J., & Broadbent, D. E. (1991). Output buffer storage and the modality of recall. Quarterly Journal of Experimental Psychology, 43, 1–18.
Teuber, H. L. (1955). Physiological psychology. Annual Review of Psychology, 9, 267–296.
Thompson, R. F., Johnson, R. H., & Hoopes, J. J. (1963). Organization of auditory, somatic sensory, and visual projection to association fields of the cerebral cortex in the cat. Journal of Neurophysiology, 26, 343–364.
Tsapkini, K., Jarema, G., & Kehayia, E. (2004). Regularity re-revisited: Modality matters. Brain and Language, 89, 611–616.
Turner, R. G. (1988). Techniques to determine test protocol performance. Ear & Hearing, 9, 177–189.
Urone, P. P. (1986). Physics with health science applications. New York: Harper and Row.
Van Attevekit, N., Formisano, E., Goebel, R., & Blomert, L. (2004). Integration of letters and speech sounds in the human brain. Neuron, 43, 271–282.
Vanniasegaram, I., Cohen, M., & Rosen, S. (2004). Evaluation of selected auditory tests in school-aged children suspected of auditory processing disorders. Ear & Hearing, 25, 586–597.
Van Orden, G. C., Pennington, B. F., & Stone, G. O. (2001). What do double dissociations prove? Cognitive Science, 25, 111–172.
Voyer, D., & Boudreau, V. G. (2003). Cross-modal correlation of auditory and visual language laterality tasks: A serendipitous finding. Brain and Cognition, 53, 393–397.
Wallace, M. T., Ramachandran, R., & Stein, B. E. (2004). A revised view of sensory cortical parcellation. Proceedings of the National Academy of Sciences, USA, 101, 2167–2172.
Watson, C. S., Kidd, G. R., Horner, D. G., Connell, P. J., Lowther, A., Eddins, D. A.et al. (2003). Sensory, cognitive, and linguistic factors in the early academic performance of elementary school children: The Benton-IU project. Journal of Learning Disabilities, 36, 165–197.
Wright, T. M., Pelphrey, K. A., Allison, T., McKeown, M. J., & McCarthy, G. (2003). Polysensory interactions along lateral temporal regions evoked by audiovisual speech. Cerebral Cortex, 13, 1034–1043.

Information & Authors

Information

Published In

American Journal of Audiology
Volume 14Number 2December 2005
Pages: 112-123

History

  • Received: Feb 8, 2005
  • Accepted: Jun 10, 2005
  • Published in issue: Dec 1, 2005

Permissions

Request permissions for this article.

Keywords

  1. central auditory processing disorder
  2. modality specificity

Authors

Affiliations

Anthony T. Cacace [email protected]
The Neurosciences Institute and Advanced Imaging Research Center, Department of Neurology, MC-65, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208
Dennis J. McFarland
Wadsworth Laboratories, New York State Health Department, Albany

Notes

Corresponding author: e-mail: [email protected]

Metrics & Citations

Metrics

Article Metrics
View all metrics



Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

For more information or tips please see 'Downloading to a citation manager' in the Help menu.

Citing Literature

  • Impact of Otitis Media With Effusion in Early Age on Auditory Processing Abilities in Children: A Systematic Review and Meta-Analysis, Ear, Nose & Throat Journal, 10.1177/01455613241241868, (2024).
  • Exploring the Differences Between an Immature and a Mature Human Auditory System Through Auditory Late Responses in Quiet and in Noise, Neuroscience, 10.1016/j.neuroscience.2024.03.018, 545, (171-184), (2024).
  • 10 Behavioral Tests for Audiological Diagnosis, Essentials of Audiology, 10.1055/b-0042-191971, (2023).
  • 6 Auditory System and Related Disorders, Essentials of Audiology, 10.1055/b-0042-191967, (2023).
  • Auditory Processing Disorder: Protocols and Controversy, American Journal of Audiology, 10.1044/2023_AJA-23-00035, 32, 3, (614-639), (2023).
  • Functional Hearing Difficulties in Veterans: Retrospective Chart Review of Auditory Processing Assessments in the VA Health Care System, American Journal of Audiology, 10.1044/2022_AJA-22-00117, 32, 1, (101-118), (2023).
  • Lack of a coherent theory limits the diagnostic and prognostic value of the (central) auditory processing disorder: a theoretical and clinical perspective, Current Opinion in Otolaryngology & Head & Neck Surgery, 10.1097/MOO.0000000000000833, 30, 5, (326-331), (2022).
  • Auditory processing disorders: diagnostic and therapeutic challenge, Otorhinolaryngology, 10.23736/S2724-6302.21.02387-2, 71, 3, (2021).
  • Central Auditory Processing and Cognitive Functions in Children, International Archives of Otorhinolaryngology, 10.1055/s-0040-1722158, 26, 01, (e020-e031), (2021).
  • Relation between auditory memory and global memory in young and older adults, European Archives of Oto-Rhino-Laryngology, 10.1007/s00405-020-06512-8, 278, 7, (2577-2583), (2021).

View Options

Sign In Options

ASHA member? If so, log in with your ASHA website credentials for full access.

Member Login

View options

PDF

View PDF

Full Text

View Full Text

Figures

Tables

Media

Share

Share

Copy the content Link

Share