No access
Research Article
June 2014

Objective Quantification of Pre- and Postphonosurgery Vocal Fold Vibratory Characteristics Using High-Speed Videoendoscopy and a Harmonic Waveform Model

Publication: Journal of Speech, Language, and Hearing Research
Volume 57, Number 3
Pages 743-757

Abstract

Purpose

The model-based quantitative analysis of high-speed videoendoscopy (HSV) data at a low frame rate of 2,000 frames per second was assessed for its clinical adequacy. Stepwise regression was employed to evaluate the HSV parameters using harmonic models and their relationships to the Voice Handicap Index (VHI). Also, the model-based HSV parameters were compared with those using conventional analysis techniques.

Method

Eight pairs of HSV recordings of vocal folds before and after surgery for benign lesions were investigated. Five glottal area waveform features—fundamental frequency (F0), open quotient (OQ), speed index (SI), relative glottal gap (RGG), and harmonics-to-noise ratio (HNR)—were measured using model-based and conventional approaches. The statistical analyses were conducted on the mean (M) and standard deviation (SD) of the feature measurements over 1 s during sustained phonation.

Results

Two model-based HSV parameters, OQ M (ρ = .67) and HNR M (ρ = −.56), were selected and explained 55% of the VHI variation. The conventional techniques yielded a regression model with OQ SD (ρ = −.60) and F0 SD (ρ = .44), explaining 61% of the VHI variation.

Conclusions

Although the selected model-based HSV parameters explained less variation in the VHI than the conventionally computed HSV parameters, the behaviors of the model-based parameters were more consistent with expectations and theory than the conventional analysis techniques.

Get full access to this article

View all available purchase options and get full access to this article.

References

Baken, R. J., & Orlikoff, R. F. (2000). Clinical measurement of speech and voice (2nd ed.). San Diego, CA: Singular.
Biever, D. M., & Bless, D. M. (1989). Vibratory characteristics of the vocal folds in young adult and geriatric women. Journal of Voice, 3, 120–131. doi:10.1016/s0892-1997(89)80138-9
Branski, R. C., Verdolini, K., Sandulache, V., Rosen, C. A., & Hebda, P. A. (2006). Vocal fold wound healing: A review for clinicians. Journal of Voice, 20, 432–442. doi:10.1016/j.jvoice.2005.08.005
Chodara, A. M., Krausert, C. R., & Jiang, J. J. (2012). Kymographic characterization of vibration in human vocal folds with nodules and polyps. Laryngoscope, 122, 58–65. doi:10.1002/lary.22324
Cox, N. B., Ito, M. R., & Morrison, M. D. (1989). Technical considerations in computation of spectral harmonics-to-noise ratios for sustained vowels. Journal of Speech, Language, and Hearing Research, 32, 203–218.
Farnsworth, D. W. (1940). High speed motion pictures of human vocal cords. Bell Labs Record, 18, 203–208.
Garbin, C. P. (2013). FZT. Retrieved from http://psych.unl.edu/psycrs/statpage/comp.html
Hansen, J. K., & Thibeault, S. L. (2006). Current understanding and review of the literature: Vocal fold scarring. Journal of Voice, 20, 110–120. doi: 10.1016/j.jvoice.2004.12.005
Henrich, N., d'Alessandro, C., Doval, B., & Castellengo, M. (2005). Glottal open quotient in singing: Measurements and correlation with laryngeal mechanisms, vocal intensity, and fundamental frequency. The Journal of the Acoustical Society of America, 117, 1417–1430. doi:10.1121/1.1850031
Hirano, M. (1981). Clinical examination of voice. New York, NY: Springer Verlag.
Hirano, M., Matsushita, H., Kawasaki, H., Yoshida, Y., & Koike, Y. (1974). [Vibration of the vocal cords with unilateral polyp: An ultra-high-speed cinematographic study]. Nippon Jibiinkoka Gakkai Kaiho, 77, 593–610. doi:10.3950/jibiinkoka.77.593
Hirato, I., Yoshida, Y., & Nakajima, T. (1967). [On high-speed cinematography of vocal fold vibration]. Journal of Japanese Medical Instruments, 37, 298–305.
Ikuma, T., Kunduk, M., & McWhorter, A. J. (2012). Mitigation of temporal aliasing via harmonic modeling of laryngeal waveforms in high-speed videoendoscopy. The Journal of the Acoustical Society of America, 132, 1636–1645. doi: 10.1121/1.4742730
Inwald, E. C., Döllinger, M., Schuster, M., Eysholdt, U., & Bohr, C. (2011). Multiparametric analysis of vocal fold vibrations in healthy and disordered voices in high-speed imaging. Journal of Voice, 25, 576–590. doi:10.1016/j.jvoice.2010.04.004
Jacobson, B. H., Johnson, A., Grywalski, C., Silbergleit, A., Jacobson, G., Benninger, M. S., & Newman, C. W. (1997). The Voice Handicap Index (VHI): Development and validation. American Journal of Speech-Language Pathology, 6, 66–70.
Jiang, J. J., Chang, C.-I. B., Raviv, J. R., Gupta, S., Banzali, F. M., & Hanson, D. G. (2000). Quantitative study of mucosal wave via videokymography in canine larynges. Laryngoscope, 110, 1567–1573. doi:10.1097/00005537-200009000-00032
Jiang, J. J., Zhang, Y., Kelly, M. P., Bieging, E. T., & Hoffman, M. R. (2008). An automatic method to quantify mucosal waves via videokymography. Laryngoscope, 118, 1504–1510. doi:10.1097/MLG.0b013e318177096f
Krausert, C. R., Ying, D., Zhang, Y., & Jiang, J. J. (2011). Quantitative study of vibrational symmetry of injured vocal folds via digital kymography in excised canine larynges. Journal of Speech, Language, and Hearing Research, 54, 1022–1038. doi:10.1044/1092-4388(2010/10-0105)
Kreiman, J., Shue, Y.-L., Chen, G., Iseli, M., Gerratt, B. R., Neubauer, J., & Alwan, A. (2012). Variability in the relationships among voice quality, harmonic amplitudes, open quotient, and glottal area waveform shape in sustained phonation. The Journal of the Acoustical Society of America, 132, 2625–2632. doi:http://dx.doi.org/10.1121/1.4747007
Linville, S. E. (1992). Glottal gap configurations in two age groups of women. Journal of Speech and Hearing Research, 35, 1209–1215.
Mehta, D. D., Deliyski, D. D., Quatieri, T. F., & Hillman, R. E. (2011). Automated measurement of vocal fold vibratory asymmetry from high-speed videoendoscopy recordings. Journal of Speech, Language, and Hearing Research, 54, 47–54. doi:10.1044/1092-4388(2010/10-0026)
Mehta, D. D., Deliyski, D. D., Zeitels, S. M., Quatieri, T. F., & Hillman, R. E. (2010). Voice production mechanisms following phonosurgical treatment of early glottic cancer. Annals of Otology, Rhinology & Laryngology, 119, 1–9.
Moore, G. P., White, F. D., & von Leden, H. (1962). Ultra high speed photography in laryngeal physiology. Journal of Speech and Hearing Disorders, 27, 165–171.
Neubauer, J., Mergell, P., Eysholdt, U., & Herzel, H. (2001). Spatio-temporal analysis of irregular vocal fold oscillations: Biphonation due to desynchronization of spatial modes. The Journal of the Acoustical Society of America, 110, 3179–3192. doi:10.1121/1.1406498
Noordzij, J. P., & Woo, P. (2000). Glottal area waveform analysis of benign vocal fold lesions before and after surgery. Annals of Otology, Rhinology & Laryngology, 109, 441–446.
Patel, R. R., Liu, L., Galatsanos, N. P., & Bless, D. M. (2011). Differential vibratory characteristics of adductor spasmodic dysphonia and muscle tension dysphonia on high-speed digital imaging. Annals of Otology, Rhinology & Laryngology, 120, 21–32.
Qiu, Q., Schutte, H. K., Gu, L., & Yu, Q. (2003). An automatic method to quantify the vibration properties of human vocal folds via videokymography. Folia Phoniatrica et Logopaedica, 55, 128–136. doi:10.1159/000070724
Rosen, C. A., Murry, T., Zinn, A., Zullo, T., & Sonbolian, M. (2000). Voice handicap index change following treatment of voice disorders. Journal of Voice, 14, 619–623. doi:10.1016/s0892-1997(00)80017-x
Shaw, H. S., & Deliyski, D. D. (2008). Mucosal wave: A normophonic study across visualization techniques. Journal of Voice, 22, 23–33. doi:10.1016/j.jvoice.2006.08.006
Sonesson, B. (1959). A method for studying the vibratory movements of the vocal cords. The Journal of Laryngology & Otology, 73, 732–737. doi:10.1017/S002221510005595X
Timcke, R., von Leden, H., & Moore, P. (1958). Laryngeal vibrations: Measurements of the glottic wave: Part I. The normal vibratory cycle. AMA Archives of Otolaryngology, 68, 1–19. doi:10.1001/archotol.1958.00730020005001
Timcke, R., von Leden, H., & Moore, P. (1959). Laryngeal vibrations: Measurements of the glottic wave: Part II—Physiologic variations. AMA Archives of Otolaryngology, 69, 438–444. doi:10.1001/archotol.1959.00730030448011
Titze, I. R. (1994). Workshop on acoustic voice analysis: Summary statement. Retrieved from http://www.ncvs.org/freebooks/summary-statement.pdf
von Leden, H., Moore, P., & Timcke, R. (1960). Laryngeal vibrations: Measurements of the glottic wave: Part III. The pathologic larynx. AMA Archives of Otolaryngology, 71, 16–35. doi:10.1001/archotol.1960.03770010020003
Witt, R. E., Taylor, L. N., Regner, M. F., & Jiang, J. J. (2011). Effects of surface dehydration on mucosal wave amplitude and frequency in excised canine larynges. Otolaryngology— Head and Neck Surgery, 144, 108–113. doi:10.1177/0194599810390893
Woo, P. (1996). Quantification of videostrobolaryngoscopic findings—Measurements of the normal glottal cycle. Laryngoscope, 106, 1–27. doi:10.1097/00005537-199603001-00001
Yanagihara, N. (1967). Hoarseness: Investigation of physiological mechanisms. Annals of Otology, Rhinology & Laryngology, 76, 472–489.

Information & Authors

Information

Published In

Journal of Speech, Language, and Hearing Research
Volume 57Number 3June 2014
Pages: 743-757
PubMed: 24167233

History

  • Received: Jun 27, 2012
  • Revised: Jan 7, 2013
  • Accepted: Sep 18, 2013
  • Published in issue: Jun 1, 2014

Permissions

Request permissions for this article.

Key Words

  1. phonosurgery
  2. high-speed digital imaging
  3. computer-aided automatic voice analysis

Authors

Affiliations

Takeshi Ikuma
Louisiana State University Health Sciences Center, Baton Rouge
Melda Kunduk
Louisiana State University Health Sciences Center, Baton Rouge
Louisiana State University
Our Lady of the Lake Regional Medical Center, Baton Rouge
Andrew J. McWhorter
Louisiana State University Health Sciences Center, Baton Rouge
Our Lady of the Lake Regional Medical Center, Baton Rouge

Notes

Disclosure: The authors have declared that no competing interests existed at the time of publication.
Correspondence to Takeshi Ikuma: [email protected]
Editor: Jody Kreiman
Associate Editor: Scott Thomson

Metrics & Citations

Metrics

Article Metrics
View all metrics



Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

For more information or tips please see 'Downloading to a citation manager' in the Help menu.

Citing Literature

  • High-Speed Videoendoscopy Enhances the Objective Assessment of Glottic Organic Lesions: A Case-Control Study with Multivariable Data-Mining Model Development, Cancers, 10.3390/cancers15143716, 15, 14, (3716), (2023).
  • Harmonics-to-noise ratio estimation with deterministically time-varying harmonic model for pathological voice signals, The Journal of the Acoustical Society of America, 10.1121/10.0014177, 152, 3, (1783-1794), (2022).
  • Segmentation of Glottal Images from High-Speed Videoendoscopy Optimized by Synchronous Acoustic Recordings, Sensors, 10.3390/s22051751, 22, 5, (1751), (2022).
  • Development of Parameters towards Voice Bifurcations, Applied Sciences, 10.3390/app11125469, 11, 12, (5469), (2021).
  • A Deep Learning Enhanced Novel Software Tool for Laryngeal Dynamics Analysis, Journal of Speech, Language, and Hearing Research, 10.1044/2021_JSLHR-20-00498, 64, 6, (1889-1903), (2021).
  • Influence of spatial camera resolution in high-speed videoendoscopy on laryngeal parameters, PLOS ONE, 10.1371/journal.pone.0215168, 14, 4, (e0215168), (2019).
  • Vocal Fold Vibration in Older Adults With and Without Age-Related Dysphonia, American Journal of Speech-Language Pathology, 10.1044/2018_AJSLP-17-0061, 27, 3, (1039-1050), (2018).
  • Laryngeal High-Speed Videoendoscopy: Rationale and Recommendation for Accurate and Consistent Terminology, Journal of Speech, Language, and Hearing Research, 10.1044/2015_JSLHR-S-14-0253, 58, 5, (1488-1492), (2018).
  • Glottocorrelographic Visualization of Normal and Pathological Vocal Folds Oscillations from Videolaryngostroboscopic Images, Recent Developments and Achievements in Biocybernetics and Biomedical Engineering, 10.1007/978-3-319-66905-2_17, (192-202), (2017).
  • The Effects of the Menstrual Cycle on Vibratory Characteristics of the Vocal Folds Investigated With High-Speed Digital Imaging, Journal of Voice, 10.1016/j.jvoice.2016.08.001, 31, 2, (182-187), (2017).

View Options

Sign In Options

ASHA member? If so, log in with your ASHA website credentials for full access.

Member Login

View options

PDF

View PDF

Full Text

View Full Text

Figures

Tables

Media

Share

Share

Copy the content Link

Share