Abstract
Purpose
Recently, efforts have been made to investigate the vocal tract using magnetic resonance imaging (MRI). Due to technical limitations, teeth were omitted in many previous studies on vocal tract acoustics. However, the knowledge of how teeth influence vocal tract acoustics might be important in order to estimate the necessity of implementing teeth in vocal tract models. The aim of this study was therefore to estimate the effect of teeth on vocal tract acoustics.
Method
The acoustic properties of 18 solid (3-dimensional printed) vocal tract models without teeth were compared to the same 18 models including teeth in terms of resonance frequencies (fRn). The fRn were obtained from the transfer functions of these models excited by white noise at the glottis level. The models were derived from MRI data of 2 trained singers performing 3 different vowel conditions (/i/, /a/, and /u/) in speech and low-pitched and high-pitched singing.
Results
Depending on the oral configuration, models exhibiting side cavities or side branches were characterized by major changes in the transfer function when teeth were implemented via the introduction of pole-zero pairs.
Conclusions
To avoid errors in modeling, teeth should be included in 3-dimensional vocal tract models for acoustic evaluation.
Supplemental Material
References
-
Baer, T., Gore, J. C., Gracco, L. C., & Nye, P. W. (1991). Analysis of vocal tract shape and dimensions using magnetic resonance imaging: Vowels.The Journal of the Acoustical Society of America, 90, 799–828. -
Beuth Verlag, GmbH . (2017). Akustik—Bestimmung der Schallleistungspegel von Geräuschquellen aus Schalldruckmessungen—Verfahren der Genauigkeitsklasse 1 für reflexionsarme Räume und Halbräume [Acoustics: Determination of sound power levels of noise sources using sound pressure—Precision methods for anechoic and hemi-anechoic rooms].Berlin, Germany: Author. -
Birnbaum, N. S., & Aaronson, H. B. (2008). Dental impressions using 3D digital scanners: Virtual becomes reality.Compendium of Continuing Education in Dentistry, 29(8), 494–505,494, 496, 498–505 . -
Clément, P., Hans, S., Hartl, D. M., Maeda, S., Vaissière, J., & Brasnu, D. (2007). Vocal tract area function for vowels using three-dimensional magnetic resonance imaging. A preliminary study.Journal of Voice, 21(5), 522–530. -
Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Erlbaum. -
Cox, R. J., Kau, C. H., & Rasche, V. (2012). Three-dimensional ultrashort echo magnetic resonance imaging of orthodontic appliances in the natural dentition.American Journal of Orthodontics and Dentofacial Orthopedics, 142(4), 552–561. -
Dalmont, J. P., Nederveen, C. J., & Joly, N. (2001). Radiation impedance of tubes with different flanges: Numerical and experimental investigations.Journal of Sound and Vibration, 244(3), 505–534. -
Delvaux, B., & Howard, D. (2014). A new method to explore the spectral impact of the piriform fossae on the singing voice: Benchmarking using MRI-based 3D-printed vocal tracts.PloS One, 9(7), e102680. -
Echternach, M., Birkholz, P., Traser, L., Flügge, T. V., Kamberger, R., Burk, F., … Richter, B. (2015). Articulation and vocal tract acoustics at soprano subject's high fundamental frequencies.The Journal of the Acoustical Society of America, 137(5), 2586–2595. -
Echternach, M., Markl, M., & Richter, B. (2012). Dynamic real-time magnetic resonance imaging for the analysis of voice physiology.Current Opinion in Otolaryngology & Head and Neck Surgery, 20(6), 450–457. -
Echternach, M., Sundberg, J., Arndt, S., Markl, M., Schumacher, M., & Richter, B. (2010). Vocal tract in female registers—A dynamic real-time MRI study.Journal of Voice, 24(2), 133–139. -
Echternach, M., Sundberg, J., Baumann, T., Markl, M., & Richter, B. (2011). Vocal tract area functions and formant frequencies in opera tenors' modal and falsetto registers.The Journal of the Acoustical Society of America, 129(6), 3955–3963. -
Echternach, M., Sundberg, J., Markl, M., & Richter, B. (2010). Professional opera tenors' vocal tract configurations in registers.Folia Phoniatrica et Logopaedica, 62(6), 278–287. -
Echternach, M., Traser, L., Markl, M., & Richter, B. (2011). Vocal tract configurations in male alto register functions.Journal of Voice, 25(6), 670–677. -
Echternach, M., Traser, L., & Richter, B. (2014). Vocal tract configurations in tenors' passaggio in different vowel conditions—A real-time magnetic resonance imaging study.Journal of Voice, 28(2), 262e1–262e8. -
Fant, G. (1972). Vocal tract wall effects, losses, and resonance bandwidths.Transmission Laboratory Quarterly Progress and Status, 13(2–3), 28–52. -
Flanagan, J. (1972). Speech analysis, synthesis and perception (2nd ed.). New York, NY: Springer. -
Fleischer, M., Pinkert, S., Mattheus, W., Mainka, A., & Mürbe, D. (2015). Formant frequencies and bandwidths of the vocal tract transfer function are affected by the mechanical impedance of the vocal tract wall.Biomechanics and Modeling in Mechanobiology, 14(4), 719–733. -
Flügge, T. V., Schlager, S., Nelson, K., Nahles, S., & Metzger, M. C. (2013). Precision of intraoral digital dental impressions with iTero and extraoral digitization with the iTero and a model scanner.American Journal of Orthodontics and Dentofacial Orthopedics, 144(3), 471–478. -
Garnier, M., Henrich, N., Smith, J., & Wolfe, J. (2010). Vocal tract adjustments in the high soprano range.The Journal of the Acoustical Society of America, 127(6), 3771–3780. -
Hanna, N., Smith, J., & Wolfe, J. (2012). Low frequency response of the vocal tract: Acoustic and mechanical resonances and their losses.InT. McMinn (Ed.), Proceedings of Acoustics 2012 Fremantle: Acoustics, Development, and the Environment. Annual Conference of the Australian Acoustical Society (pp. 2–8). Perth, WA: Australian Acoustical Society, Western Australia Division. -
Helenius, L. M. J., Tervahartiala, P., Helenius, I., Al-Sukhun, J., Kivisaari, L., Suuronen, R., … Leirisalo-Repo, M. (2006). Clinical, radiographic, and MRI findings of the temporomandibular joint in patients with different rheumatic diseases.International Journal of Oral and Maxillofacial Surgery, 35(11), 983–989. -
Henrich, N., Smith, J., & Wolfe, J. (2011). Vocal tract resonances in singing: Strategies used by sopranos, altos, tenors, and baritones.The Journal of the Acoustical Society of America, 129(2), 1024–1035. -
Honda, K., Adachi, S., Shimada, Y., Dang, J., Kitamura, T., Mokhtari, P., … Fujita, S. (2010). Visualization of hypopharyngeal cavities and vocal-tract acoustic modeling.Computer Methods in Biomechanics and Biomedical Engineering, 13(4), 443–453. -
Honda, K., Takano, S., & Takemoto, H. (2010). Effects of side cavities and tongue stabilization: Possible extensions of the quantal theory.Journal of Phonetics, 38(1), 33–43. -
Hövener, J.-B., Zwick, S., Leupold, J., Eisenbeiβ, A.-K., Scheifele, C., Schellenberger, F., … Ludwig, U. (2012). Dental MRI: Imaging of soft and solid components without ionizing radiation.Journal of Magnetic Resonance Imaging, 36(4), 841–846. -
Idiyatullin, D., Corum, C., Moeller, S., Prasad, H. S., Garwood, M., & Nixdorf, D. R. (2011). Dental magnetic resonance imaging: Making the invisible visible.Journal of Endodontics, 37(6), 745–752. -
Inohara, K., Sumita, Y. I., Ohbayashi, N., Ino, S., Kurabayashi, T., Ifukube, T., & Taniguchi, H. (2010). Standardization of thresholding for binary conversion of vocal tract modeling in computed tomography.Journal of Voice, 24(4), 503–509. - Inus Technologies. (1998-2008).
Rapidform XOR (Version 3) [Computer software] . Seoul, South Korea: Author. - IVS Solutions, AG. (1999-2008).
VoXim (Version 6.0) [Computer software] . Chemnitz, Germany: Author. -
Joliveau, E., Smith, J., & Wolfe, J. (2004). Vocal tract resonances in singing: The soprano voice.The Journal of the Acoustical Society of America, 116(4), 2434–2439. -
Kanayama, N., & Mizokami, T. (1993). A study of the influence of arrangement of upper posterior artificial teeth on pronunciation: Japanese sounds articulated on the posterior palate.The Bulletin of Tokyo Dental College, 34(2), 69–77. -
Kitamura, T., Nishimoto, H., Fujimoto, I., & Shimada, Y. (2011). Dental imaging using a magnetic resonance visible mouthpiece for measurement of vocal tract shape and dimensions.Acoustical Science and Technology, 32(5), 224–227. -
Kitamura, T., Takemoto, H., Adachi, S., & Honda, K. (2009). Transfer functions of solid vocal-tract models constructed from ATR MRI database of Japanese vowel production.Acoustical Science and Technology, 30(4), 288–296. -
Kob, M. (2002). Physical modeling of the singing voice. Berlin, Germany: Logos Verlag. -
Lindblom, B., & Sundberg, J. (1971). Acoustical consequences of lip, tongue, jaw, and larynx movement.The Journal of the Acoustical Society of America, 50(48), 1166–1179. -
Mainka, A., Poznyakovskiy, A., Platzek, I., Fleischer, M., Sundberg, J., & Mürbe, D. (2015). Lower vocal tract morphologic adjustments are relevant for voice timbre in singing.PLoS One, 10(7), e0132241. -
Mainka, A., Platzek, I., Mattheus, W., Fleischer, M., Müller, A.-S., & Mürbe, D. (2016). Three-dimensional vocal tract morphology based on multiple magnetic resonance images is highly reproducible during sustained phonation.Journal of Voice, 31(4), 504.e11–504.e20. -
Neuschaefer-Rube, C., Wein, B., Angerstein, W., & Klajman, S. (1996). MRI examination of laryngeal height during vowel singing.Folia Phoniatrica et Logopaedica, 48(4), 201–209. -
Ng, I. W., Ono, T., Inoue-Arai, M. S. ,Honda, E., Kurabayashi, T., & Moriyama, K. (2011). Application of MRI movie for observation of articulatory movement during a fricative /s/ and a plosive /t/: Tooth visualization in MRI.The Angle Orthodontist, 81(2), 237–244. -
Niebergall, A., Zhang, S., Kunay, E., Keydana, G., Job, M., Uecker, M., & Frahm, J. (2013). Real-time MRI of speaking at a resolution of 33 ms: Undersampled radial FLASH with nonlinear inverse reconstruction.Magnetic Resonance in Medicine, 69(2), 477–485. -
Okamoto, N., Tomioka, K., Saeki, K., Iwamoto, J., Morikawa, M., Harano, A., & Kurumatani, N. (2012). Relationship between swallowing problems and tooth loss in community-dwelling independent elderly adults: The Fujiwara-kyo study.Journal of the American Geriatrics Society, 60(5), 849–853. -
Olt, S., & Jakob, P. M. (2004). Contrast-enhanced dental MRI for visualization of the teeth and jaw.Magnetic Resonance in Medicine, 52(1), 174–176. -
Plooij, J. M., Maal, T. J. J., Haers, P., Borstlap, W. A., Kuijpers-Jagtman, A. M., & Bergé, S. J. (2011). Digital three-dimensional image fusion processes for planning and evaluating orthodontics and orthognathic surgery. A systematic review.International Journal of Oral and Maxillofacial Surgery, 40(4), 341–352. -
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., … Cardona, A. (2012). Fiji: An open-source platform for biological-image analysis.Nature Methods, 9(7), 676–682. -
Shipp, T., Guinn, L., Sundberg, J., & Titze, I. (1987). Vertical laryngeal position—Research findings and their relationship to singing.Journal of Voice, 1(3), 220–222. -
Sjölander, K. & Beskow, J. (2005).WaveSurfer (Version 1.8.5) [Computer software] . Stockholm, Sweden: KTH. -
Stevens, K. N. (1998). Acoustic phonetics. Cambridge, MA: MIT Press. -
Story, B. H. (2009). Vowel and consonant contributions to vocal tract shape.The Journal of the Acoustical Society of America, 126(2), 825–836. http://doi.org/10.1121/1.3158816 -
Story, B. H., & Bunton, K. (2010). Relation of vocal tract shape, formant transitions, and stop consonant identification.Journal of Speech, Language, and Hearing Research, 53(6), 1514–1528. -
Story, B. H., Titze, I. R., & Hoffman, E. A. (1996). Vocal tract area functions from magnetic resonance imaging.The Journal of the Acoustical Society of America, 100(1), 537–554. -
Story, B. H., Titze, I. R., & Hoffman, E. A. (1998). Vocal tract area functions for an adult female speaker based on volumetric imaging.The Journal of the Acoustical Society of America, 104(1), 471–487. -
Story, B. H., Titze, I. R., & Hoffman, E. A. (2001). The relationship of vocal tract shape to three voice qualities.The Journal of the Acoustical Society of America, 109(4), 1651–1667. -
Sundberg, J. (1975). Formant technique in a professional female singer.Acta Acustuca united with Acustica, 32(2), 89–96. -
Sundberg, J. (1977). The acoustics of the singing voice.Scientific American, 236(3), 82–91,82–84, 86, 88–91 . -
Sundberg, J. (2009). Articulatory configuration and pitch in a classically trained soprano singer.Journal of Voice, 23(5), 546–551. -
Takemoto, H., Honda, K., Masaki, S., Shimada, Y., & Fujimoto, I. (2006). Measurement of temporal changes in vocal tract area function from 3D cine-MRI data.The Journal of the Acoustical Society of America, 119(2), 1037–1049. -
Takemoto, H., Kitamura, T., Nishimoto, H., & Honda, K. (2004). A method of tooth superimposition on MRI data for accurate measurement of vocal tract shape and dimensions.Acoustical Science and Technology, 25(6), 468–474. -
Takemoto, H., Mokhtari, P., & Kitamura, T. (2010). Acoustic analysis of the vocal tract during vowel production by finite-difference time-domain method.The Journal of the Acoustical Society of America, 128(6), 3724–3738. -
Tameem, H. Z., & Mehta, B. V. (2004). Solid modeling of human vocal tract using magnetic resonance imaging and acoustic pharyngometer.Conference Proceedings: IEEE Engineering in Medicine and Biology Society. Conference, 7, 5115–5118. -
Titze, I. R., Baken, R. J., Bozeman, K. W., Granqvist, S., Henrich, N., Herbst, C. T., … Wolfe, J. (2015). Toward a consensus on symbolic notation of harmonics, resonances, and formants in vocalization.The Journal of the Acoustical Society of America, 137, 3005–3007. -
Tom, K., Titze, I. R., Hoffman, E. A., & Story, B. H. (2001). Three-dimensional vocal tract imaging and formant structure: Varying vocal register, pitch, and loudness.The Journal of the Acoustical Society of America, 109(2), 742–747. -
Traser, L., Burdumy, M., Richter, B., Vicari, M., & Echternach, M. (2013). The effect of supine and upright position on vocal tract configurations during singing—A comparative study in professional tenors.Journal of Voice, 27(2), 141–148. -
Traser, L., Burdumy, M., Richter, B., Vicari, M., & Echternach, M. (2014). Weight-bearing MR imaging as an option to study gravitational effects on the vocal tract of untrained subjects in singing phonation.PloS One, 9(11), e112405. -
Traser, L., Flügge, T. V., Burdumy, M., Kamberger, R., Richter, B., Frederike, H., … Echternach, M. (2015). A comparison of different methods to generate tooth surface models without applying ionizing radiation for digital 3-dimensional image fusion with magnetic resonance imaging-based data of the head and neck region.Journal of Computer Assisted Tomography, 39(6), 882–889. -
Vampola, T., Horáček, J., Laukkanen, A.-M., & Svec, J. G. (2013). Human vocal tract resonances and the corresponding mode shapes investigated by three-dimensional finite-element modelling based on CT measurement.Logopedics, Phoniatrics, Vocology, 40(1), 14–23. -
Ventura, S. M. R., Freitas, D. R. S., Ramos, I. M., & Tavares, J. M. R. S. (2012). Three-dimensional visualization of teeth by magnetic resonance imaging during speech.InR. M. N. Jorge, J. C. R. Campos, J. M. R. S. Tavares, M. A. P. Vas, & S. M. Santos (Eds.), Biodental Engineering II. Proceedings of the 2nd International Conference on Biodental Engineering, BIODENTAL 2012 (pp. 13–17). Boca Raton, FL: CRC Press, 13–17. -
Ventura, S. M. R., Freitas, D. R. S., Ramos, I. M. A. P., & Tavares, J. M. R. S. (2013). Morphologic differences in the vocal tract resonance cavities of voice professionals: An MRI-based study.Journal of Voice, 27(2), 132–140. -
Ventura, S. M. R., Freitas, D. R. S., & Tavares, J. M. R. S. (2009). Application of MRI and biomedical engineering in speech production study.Computer Methods in Biomechanics and Biomedical Engineering, 12(6), 671–681. -
Ventura, S. M. R., Freitas, D. R. S., & Tavares, J. M. R. S. (2011). Toward dynamic magnetic resonance imaging of the vocal tract during speech production.Journal of Voice.( 25(4), 511–518. -
Yushkevich, P. A., Piven, J., Hazlett, H. C., Smith, R. G., Ho, S., Gee, J. C., & Gerig, G. (2006). User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability.NeuroImage, 31(3), 1116–1128. -
Zhu, Y., Kim, Y.-C., Proctor, M. I., Narayanan, S. S., & Nayak, K. S. (2013). Dynamic 3-D visualization of vocal tract shaping during speech.IEEE Transactions on Medical Imaging, 32(5), 838–848.