No access
Research Article
20 September 2019

Rhythmic Training Improves Temporal Anticipation and Adaptation Abilities in Children With Hearing Loss During Verbal Interaction

Publication: Journal of Speech, Language, and Hearing Research
Volume 62, Number 9
Pages 3234-3247

Abstract

Purpose

In this study, we investigate temporal adaptation capacities of children with normal hearing and children with cochlear implants and/or hearing aids during verbal exchange. We also address the question of the efficiency of a rhythmic training on temporal adaptation during speech interaction in children with hearing loss.

Method

We recorded electroencephalogram data in children while they named pictures delivered on a screen, in alternation with a virtual partner. We manipulated the virtual partner's speech rate (fast vs. slow) and the regularity of alternation (regular vs. irregular). The group of children with normal hearing was tested once, and the group of children with hearing loss was tested twice: once after 30 min of auditory training and once after 30 min of rhythmic training.

Results

Both groups of children adjusted their speech rate to that of the virtual partner and were sensitive to the regularity of alternation with a less accurate performance following irregular turns. Moreover, irregular turns elicited a negative event-related potential in both groups, showing a detection of temporal deviancy. Notably, the amplitude of this negative component positively correlated with accuracy in the alternation task. In children with hearing loss, the effect was more pronounced and long-lasting following rhythmic training compared with auditory training.

Conclusion

These results are discussed in terms of temporal adaptation abilities in speech interaction and suggest the use of rhythmic training to improve these skills of children with hearing loss.

Get full access to this article

View all available purchase options and get full access to this article.

References

Allen, J., Kraus, N., & Bradlow, A. (2000). Neural representation of consciously imperceptible speech sound differences. Perception & Psychophysics, 62(7), 1383–1393.
Başkent, D., & Gaudrain, E. (2016). Musician advantage for speech-on-speech perception. The Journal of the Acoustical Society of America, 139(3), EL51–EL56.
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 1–48.
Bedoin, N., Brisseau, L., Molinier, P., Roch, D., & Tillmann, B. (2016). Temporally regular musical primes facilitate subsequent syntax processing in children with specific language impairment. Frontiers in Neuroscience, 10, 245.
Berens, P. (2009). CircStat: A MATLAB toolbox for circular statistics. Journal of Statistical Software, 31(10), 1–21.
Bigi, B. (2015). SPPAS-multi-lingual approaches to the automatic annotation of speech. The Phonetician-International Society of Phonetic Sciences, 54–69.
Boersma, P., & Weenink, D. (2012). Praat: Doing phonetics by computer (Version 5.3.32) [Computer program] . Retrieved from http://www.praat.org/
Cameron, D. J., & Grahn, J. A. (2014). Enhanced timing abilities in percussionists generalize to rhythms without a musical beat. Frontiers in Human Neuroscience, 8, 1003.
Cannard, C., Blaye, A., Scheuner, N., & Bonthoux, F. (2005). Picture naming in 3- to 8-year-old French children: Methodological considerations for name agreement. Behavior Research Methods, 37(3), 417–425.
Cason, N., Astésano, C., & Schön, D. (2015). Bridging music and speech rhythm: Rhythmic priming and audio-motor training affect speech perception. Acta Psychologica, 155, 43–50.
Cason, N., Hidalgo, C., Isoard, F., Roman, S., & Schön, D. (2015). Rhythmic priming enhances speech production abilities: Evidence from prelingually deaf children. Neuropsychology, 29(1), 102–107.
Cason, N., & Schön, D. (2012). Rhythmic priming enhances the phonological processing of speech. Neuropsychologia, 50(11), 2652–2658.
Chern, A., Tillmann, B., Vaughan, C., & Gordon, R. L. (2018). New evidence of a rhythmic priming effect that enhances grammaticality judgments in children. Journal of Experimental Child Psychology, 173, 371–379.
Chobert, J., Marie, C., François, C., Schön, D., & Besson, M. (2011). Enhanced passive and active processing of syllables in musician children. Journal of Cognitive Neuroscience, 23(12), 3874–3887.
Church, A., Paatsch, L., & Toe, D. (2017). Some trouble with repair: Conversations between children with cochlear implants and hearing peers. Discourse Studies, 19(1), 49–68.
Cirelli, L. K., Wan, S. J., & Trainor, L. J. (2014). Fourteen-month-old infants use interpersonal synchrony as a cue to direct helpfulness. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1658), 20130400–20130400.
Cummins, F., & Port, R. (1998). Rhythmic constraints on stress timing in English. Journal of Phonetics, 26(2), 145–171.
Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134, 9–21.
Descourtieux, C. (2006). Annexe 1. Le TERMO: Test d'Évaluation de la Réception du Message Oral par l'enfant sourd. In C. Hagège (Ed.), Compétences cognitives, linguistiques et sociales de l'enfant sourd: Pistes d'évaluation (pp. 267–269). Wavre, Belgique: Mardaga.
Drake, C. (1993). Reproduction of musical rhythms by children, adult musicians, and adult nonmusicians. Perception & Psychophysics, 53(1), 25–33.
Elmer, S., Meyer, M., & Jäncke, L. (2012). The spatiotemporal characteristics of elementary audiovisual speech and music processing in musically untrained subjects. International Journal of Psychophysiology, 83(3), 259–268.
Falk, S., Müller, T., & Dalla Bella, S. (2015). Non-verbal sensorimotor timing deficits in children and adolescents who stutter. Frontiers in Psychology, 6, 847.
Flaugnacco, E., Lopez, L., Terribili, C., Montico, M., Zoia, S., & Schön, D. (2015). Music training increases phonological awareness and reading skills in developmental dyslexia: A randomized control trial. PLOS ONE, 10(9), e0138715.
François, C., & Schön, D. (2014). Neural sensitivity to statistical regularities as a fundamental biological process that underlies auditory learning: The role of musical practice. Hearing Research, 308, 122–128.
Freeman, V., & Pisoni, D. B. (2017). Speech rate, rate-matching, and intelligibility in early-implanted cochlear implant users. The Journal of the Acoustical Society of America, 142(2), 1043–1054.
Fu, Q.-J., Galvin, J. J., Wang, X., & Wu, J.-L. (2017). Benefits of music training in Mandarin-speaking pediatric cochlear implant users. Journal of Speech, Language, and Hearing Research, 58, 163–169.
Garrido, M. I., Kilner, J. M., Stephan, K. E., & Friston, K. J. (2009). The mismatch negativity: A review of underlying mechanisms. Clinical Neurophysiology, 120(3), 453–463.
Geiser, E., Sandmann, P., Jäncke, L., & Meyer, M. (2010). Refinement of metre perception—Training increases hierarchical metre processing. European Journal of Neuroscience, 32(11), 1979–1985.
Good, A., Gordon, K. A., Papsin, B. C., Nespoli, G., Hopyan, T., Peretz, I., & Russo, F. (2017). Benefits of music training for perception of emotional speech prosody in deaf children with cochlear implants. Ear and Hearing, 38, 455–464.
Gregory, R. L. (1980). Perceptions as hypotheses. Philosophical Transactions of the Royal Society B: Biological Sciences, 290(1038), 181–197.
Haegens, S., & Golumbic, E. Z. (2018). Rhythmic facilitation of sensory processing: A critical review. Neuroscience & Biobehavioral Reviews, 86, 150–165.
Hidalgo, C., Falk, S., & Schön, D. (2017). Speak on time! Effects of a musical rhythmic training on children with hearing loss. Hearing Research, 351, 11–18.
Hilbrink, E. E., Gattis, M., & Levinson, S. C. (2015). Early developmental changes in the timing of turn-taking: A longitudinal study of mother–infant interaction. Frontiers in Psychology, 6, 1492.
Himberg, T., Hirvenkari, L., Mandel, A., & Hari, R. (2015). Word-by-word entrainment of speech rhythm during joint story building. Frontiers in Psychology, 6, 797.
Hoffman, M. F., Quittner, A. L., & Cejas, I. (2014). Comparisons of social competence in young children with and without hearing loss: A dynamic systems framework. Journal of Deaf Studies and Deaf Education, 20(2), 115–124.
Jones, M. R., & Yee, W. (1997). Sensitivity to time change: The role of context and skill. Journal of Experimental Psychology: Human Perception and Performance, 23(3), 693–709.
Kelly, A. S., Purdy, S. C., & Thorne, P. R. (2005). Electrophysiological and speech perception measures of auditory processing in experienced adult cochlear implant users. Clinical Neurophysiology, 116(6), 1235–1246.
Kluwin, T. N., Stinson, M. S., & Colarossi, G. M. (2002). Social processes and outcomes of in-school contact between deaf and hearing peers. Journal of Deaf Studies and Deaf Education, 7(3), 200–213.
Koelsch, S., Vuust, P., & Friston, K. (2019). Predictive processes and the peculiar case of music. Trends in Cognitive Sciences, 23(1), 63–77.
Koelsch, S., Wittfoth, M., Wolf, A., Müller, J., & Hahne, A. (2004). Music perception in cochlear implant users: An event-related potential study. Clinical Neurophysiology, 115(4), 966–972.
Konvalinka, I., Vuust, P., Roepstorff, A., & Frith, C. D. (2010). Follow you, follow me: Continuous mutual prediction and adaptation in joint tapping. Quarterly Journal of Experimental Psychology, 63(11), 2220–2230.
Korpilahti, P., Krause, C. M., Holopainen, I., & Lang, A. H. (2001). Early and late mismatch negativity elicited by words and speech-like stimuli in children. Brain and Language, 76(3), 332–339.
Kotz, S. A., Gunter, T. C., & Wonneberger, S. (2005). The basal ganglia are receptive to rhythmic compensation during auditory syntactic processing: ERP patient data. Brain and Language, 95, 70–71.
Kourtis, D., Sebanz, N., & Knoblich, G. (2013). Predictive representation of other people's actions in joint action planning: An EEG study. Social Neuroscience, 8(1), 31–42.
Krause, V., Schnitzler, A., & Pollok, B. (2010). Functional network interactions during sensorimotor synchronization in musicians and non-musicians. NeuroImage, 52, 245–251.
Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest package: Tests in linear mixed effects models. Journal of Statistical Software, 82(13), 1–26.
Levinson, S. C., & Torreira, F. (2015). Timing in turn-taking and its implications for processing models of language. Frontiers in Psychology, 6, 731.
Liang, M., Zhang, X., Chen, T., Zheng, Y., Zhao, F., Yang, H., … Chen, L. (2014). Evaluation of auditory cortical development in the early stages of post cochlear implantation using mismatch negativity measurement. Otology & Neurotology, 35(1), e7–e14.
Lonka, E., Relander-Syrjänen, K., Johansson, R., Näätänen, R., Alho, K., & Kujala, T. (2013). The mismatch negativity (MMN) brain response to sound frequency changes in adult cochlear implant recipients: A follow-up study. Acta Oto-Laryngologica, 133(8), 853–857.
Loundon, N., Busquet, D., & Garbédian, E. N. (2009). Implant cochléaire pédiatrique et rééducation orthophonique /comment adapter les pratiques. Paris, France: Flammarion.
Magne, C., Jordan, D. K., & Gordon, R. L. (2016). Speech rhythm sensitivity and musical aptitude: ERPs and individual differences. Brain and Language, 153–154, 13–19.
Manson, J. H., Bryant, G. A., Gervais, M. M., & Kline, M. A. (2013). Convergence of speech rate in conversation predicts cooperation. Evolution and Human Behavior, 34, 419–426.
Margulis, E. H. (2012). Musical repetition detection across multiple exposures. Music Perception: An Interdisciplinary Journal, 29(4), 377–385.
Marie, C., Magne, C., & Besson, M. (2011). Musicians and the metric structure of words. Journal of Cognitive Neuroscience, 23(2), 294–305.
Merchant, H., Grahn, J., Trainor, L., Rohrmeier, M., & Fitch, W. T. (2015). Finding the beat: A neural perspective across humans and non-human primates. Philosophical Transactions of the Royal Society B: Biological Sciences, 370, 20140093.
Merchant, H., & Honing, H. (2014). Are non-human primates capable of rhythmic entrainment? Evidence for the gradual audiomotor evolution hypothesis. Frontiers in Neuroscience, 7, 274.
Morillon, B., & Baillet, S. (2017). Motor origin of temporal predictions in auditory attention. Proceedings of the National Academy of Sciences of the United States of America, 114(42), E8913–E8921.
Morillon, B., Schroeder, C. E., & Wyart, V. (2014). Motor contributions to the temporal precision of auditory attention. Nature Communications, 5, 5255.
Moritz, C., Yampolsky, S., Papadelis, G., Thomson, J., & Wolf, M. (2013). Links between early rhythm skills, musical training, and phonological awareness. Reading and Writing, 26(5), 739–769.
Morton, J., Marcus, S. M., & Frankish, C. R. (1976). Perceptual centers (p-centers). Psychological Review, 83(5), 405–408.
Most, T., Shina-August, E., & Meilijson, S. (2010). Pragmatic abilities of children with hearing loss using cochlear implants or hearing aids compared to hearing children. Journal of Deaf Studies and Deaf Education, 15(4), 422–437.
Näätänen, R. (1990). The role of attention in auditory information processing as revealed by event-related potentials and other brain measures of cognitive function. Behavioral and Brain Sciences, 13(2), 201–233.
Näätänen, R., & Alho, K. (1995). Mismatch negativity—A unique measure of sensory processing in audition. International Journal of Neuroscience, 80(1–4), 317–337.
Näätänen, R., Gaillard, A. W., & Mäntysalo, S. (1978). Early selective-attention effect on evoked potential reinterpreted. Acta Psychologica, 42(4), 313–329.
Näätänen, R., Pakarinen, S., Rinne, T., & Takegata, R. (2004). The mismatch negativity (MMN): Towards the optimal paradigm. Clinical Neurophysiology, 115(1), 140–144.
Näätänen, R., Petersen, B., Torppa, R., Lonka, E., & Vuust, P. (2017). The MMN as a viable and objective marker of auditory development in CI users. Hearing Research, 353, 57–75.
Näätänen, R., Tervaniemi, M., Sussman, E., Paavilainen, P., & Winkler, I. (2001). ‘Primitive intelligence’ in the auditory cortex. Trends in Neurosciences, 24(5), 283–288.
Näätänen, R., & Winkler, I. (1999). The concept of auditory stimulus representation in cognitive neuroscience. Psychological Bulletin, 125(6), 826–859.
Ortmann, M., Knief, A., Deuster, D., Brinkheetker, S., Zwitserlood, P., Zehnhoff-Dinnesen, A. A., & Dobel, C. (2013). Neural correlates of speech processing in prelingually deafened children and adolescents with cochlear implants. PLOS ONE, 8(7), e67696.
Pallone, G., Boussard, P., Daudet, L., Guillemain, P., & Kronland-Martinet, R. (1999). A wavelet based method for audio-video synchronization in broadcasting applications. Proceedings of the International Conference on Digital Audio Effects, Trondheim, Norway.
Patel, A. D. (2014). The evolutionary biology of musical rhythm: Was Darwin wrong? PLOS Biology, 12(3), e1001821.
Patel, A. D., & Morgan, E. (2017). Exploring cognitive relations between prediction in language and music. Cognitive Science, 41, 303–320.
Peelle, J. E., & Davis, M. H. (2012). Neural oscillations carry speech rhythm through to comprehension. Frontiers in Psychology, 3, 320.
Pickering, M. J., & Garrod, S. (2013). An integrated theory of language production and comprehension. The Behavioral and Brain Sciences, 36(4), 329–347.
Ponton, C. W., & Eggermont, J. J. (2001). Of kittens and kids: Altered cortical maturation following profound deafness and cochlear implant use. Audiology and Neuro-Otology, 6(6), 363–380.
Port, R. F. (2003). Meter and speech. Journal of Phonetics, 31(3–4), 599–611.
Przybylski, L., Bedoin, N., Krifi-Papoz, S., Herbillon, V., Roch, D., Léculier, L., … Tillmann, B. (2013). Rhythmic auditory stimulation influences syntactic processing in children with developmental language disorders. Neuropsychology, 27(1), 121–131.
R Core Team. (2013). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/
Rammsayer, T., & Altenmüller, E. (2006). Temporal information processing in musicians and nonmusicians. Music Perception, 24(1), 37–48.
Repp, B. H. (2005). Sensorimotor synchronization: A review of the tapping literature. Psychonomic Bulletin & Review, 12(6), 969–992.
Repp, B. H. (2010). Sensorimotor synchronization and perception of timing: Effects of music training and task experience. Human Movement Science, 29(2), 200–213.
Repp, B. H., & Doggett, R. (2007). Tapping to a very slow beat: A comparison of musicians and nonmusicians. Music Perception: An Interdisciplinary Journal, 24, 367–376.
Sares, A. G., Foster, N. E. V., Allen, K., & Hyde, K. L. (2018). Pitch and time processing in speech and tones: The effects of musical training and attention. Journal of Speech, Language, and Hearing Research, 61(3), 496–509.
Schön, D., & Tillmann, B. (2015). Short- and long-term rhythmic interventions: Perspectives for language rehabilitation. Annals of the New York Academy of Sciences, 1337(1), 32–39.
Schultz, B. G., O'Brien, I., Phillips, N., & Mcfarland, D. H. (2016). Speech rates converge in scripted turn-taking conversations. Applied Psycholinguistics, 37, 1201–1220.
Sebanz, N., & Knoblich, G. (2009). Prediction in joint action: What, when, and where. Topics in Cognitive Science, 1(2), 353–367.
Singh, S., Liasis, A., Rajput, K., Towell, A., & Luxon, L. (2004). Event-related potentials in pediatric cochlear implant patients. Ear and Hearing, 25(6), 598–610. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15604920
Street, R. L. (1984). Speech convergence and speech evaluation in fact-finding interviews. Human Communication Research, 11(2), 139–169.
Street, R. L., & Cappella, J. N. (1989). Social and linguistic factors influencing adaptation in children's speech. Journal of Psycholinguistic Research, 18(5), 497–519.
Street, R. L., Street, N. J., & Van Kleek, A. (1983). Speech convergence among talkative and reticent three year-olds. Language Sciences, 5, 79–96.
Swaminathan, J., Mason, C. R., Streeter, T. M., Best, V., Kidd, G., Jr., & Patel, A. D. (2015). Musical training, individual differences and the cocktail party problem. Scientific Reports, 5(1), 11628.
Timm, L., Agrawal, D., Viola, F. C., Sandmann, P., Debener, S., Büchner, A., … Wittfoth, M. (2012). Temporal feature perception in cochlear implant users. PLOS ONE, 7(9), e45375.
Timm, L., Vuust, P., Brattico, E., Agrawal, D., Debener, S., Büchner, A., … Wittfoth, M. (2014). Residual neural processing of musical sound features in adult cochlear implant users. Frontiers in Human Neuroscience, 8, 181.
Torppa, R., Huotilainen, M., Leminen, M., Lipsanen, J., & Tervaniemi, M. (2014). Interplay between singing and cortical processing of music: A longitudinal study in children with cochlear implants. Frontiers in Psychology, 5, 1389.
Torppa, R., Salo, E., Makkonen, T., Loimo, H., Pykäläinen, J., Lipsanen, J., … Huotilainen, M. (2012). Cortical processing of musical sounds in children with cochlear implants. Clinical Neurophysiology, 123(10), 1966–1979.
Turgeon, C., Lazzouni, L., Lepore, F., & Ellemberg, D. (2014). An objective auditory measure to assess speech recognition in adult cochlear implant users. Clinical Neurophysiology, 125(4), 827–835.
Valdesolo, P., Ouyang, J., & DeSteno, D. (2010). The rhythm of joint action: Synchrony promotes cooperative ability. Journal of Experimental Social Psychology, 46(4), 693–695.
van der Steen, M. C. M., & Keller, P. E. (2013). The ADaptation and Anticipation Model (ADAM) of sensorimotor synchronization. Frontiers in Human Neuroscience, 7, 253.
van Zuijen, T. L., Simoens, V. L., Paavilainen, P., Näätänen, R., & Tervaniemi, M. (2006). Implicit, intuitive, and explicit knowledge of abstract regularities in a sound sequence: An event-related brain potential study. Journal of Cognitive Neuroscience, 18(8), 1292–1303.
Viola, F. C., De Vos, M., Hine, J., Sandmann, P., Bleeck, S., Eyles, J., & Debener, S. (2012). Semi-automatic attenuation of cochlear implant artifacts for the evaluation of late auditory evoked potentials. Hearing Research, 284(1–2), 6–15.
Vuust, P., Pallesen, K. J., Bailey, C., van Zuijen, T. L., Gjedde, A., Roepstorff, A., & Østergaard, L. (2005). To musicians, the message is in the meter: Pre-attentive neuronal responses to incongruent rhythm are left-lateralized in musicians. NeuroImage, 24(2), 560–564.
Wacongne, C., Changeux, J.-P., & Dehaene, S. (2012). A neuronal model of predictive coding accounting for the mismatch negativity. The Journal of Neuroscience, 32(11), 3665–3678.
Wilson, M., & Wilson, T. P. (2005). An oscillator model of the timing of turn-taking. Psychonomic Bulletin & Review, 12(6), 957–968. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16615316
Winkler, I., Karmos, G., & Näätänen, R. (1996). Adaptive modeling of the unattended acoustic environment reflected in the mismatch negativity event-related potential. Brain Research, 742(1–2), 239–252.
Wong, C. L., Ching, T. Y. C., Cupples, L., Button, L., Leigh, G., Marnane, V., … Martin, L. (2017). Psychosocial development in 5-year-old children with hearing loss using hearing aids or cochlear implants. Trends in Hearing, 21, 233121651771037.
Yee, W., Holleran, S., & Jones, M. R. (1994). Sensitivity to event timing in regular and irregular sequences: Influences of musical skill. Perception & Psychophysics, 56(4), 461–471. Retrieved from https://link.springer.com/content/pdf/10.3758/BF03206737.pdf
Zarco, W., Merchant, H., Prado, L., & Mendez, J. C. (2009). Subsecond timing in primates: Comparison of interval production between human subjects and rhesus monkeys. Journal of Neurophysiology, 102(6), 3191–3202.
Zhang, F., Benson, C., & Fu, Q.-J. (2013). Cortical encoding of pitch contour changes in cochlear implant users: A mismatch negativity study. Audiology and Neuro-Otology, 18(5), 275–288.

Information & Authors

Information

Published In

Journal of Speech, Language, and Hearing Research
Volume 62Number 9September 2019
Pages: 3234-3247
PubMed: 31433722

History

  • Received: Aug 27, 2018
  • Revised: Feb 18, 2019
  • Accepted: May 16, 2019
  • Published online: Aug 21, 2019
  • Published in issue: Sep 20, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Céline Hidalgo
Aix Marseille Univ, CNRS, LPL, Aix-en Provence, France
Aix Marseille Univ, Inserm, INS, Inst Neurosci Syst, Marseille, France
Jacques Pesnot-Lerousseau
Aix Marseille Univ, Inserm, INS, Inst Neurosci Syst, Marseille, France
Patrick Marquis
Aix Marseille Univ, Inserm, INS, Inst Neurosci Syst, Marseille, France
Stéphane Roman
Aix Marseille Univ, Inserm, INS, Inst Neurosci Syst, Marseille, France
Pediatric Otolaryngology department, La Timone Children’s Hospital (APHM), Marseille, France
Daniele Schön
Aix Marseille Univ, Inserm, INS, Inst Neurosci Syst, Marseille, France

Notes

Disclosure: The authors have declared that no competing interests existed at the time of publication.
Correspondence to Céline Hidalgo: [email protected]
Editor-in-Chief: Julie Liss
Editor: Bharath Chandrasekaran

Metrics & Citations

Metrics

Article Metrics
View all metrics



Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

For more information or tips please see 'Downloading to a citation manager' in the Help menu.

Citing Literature

  • Vocal control and speech production in cochlear implant listeners: A review within auditory-motor processing framework, Hearing Research, 10.1016/j.heares.2024.109132, 453, (109132), (2024).
  • Similar gaze behaviour during dialogue perception in congenitally deaf children with cochlear Implants and normal hearing children, International Journal of Language & Communication Disorders, 10.1111/1460-6984.13094, 59, 6, (2441-2453), (2024).
  • Auditory and motor priming of metric structure improves understanding of degraded speech, Cognition, 10.1016/j.cognition.2024.105793, 248, (105793), (2024).
  • Music Exposure and Maternal Musicality Predict Vocabulary Development in Children with Cochlear Implants, Music Perception: An Interdisciplinary Journal, 10.1525/mp.2024.41.4.240, 41, 4, (240-261), (2024).
  • Effectiveness of rhythmic training on linguistics skill development in deaf children and adolescents with cochlear implants: A systematic review, International Journal of Pediatric Otorhinolaryngology, 10.1016/j.ijporl.2023.111561, 169, (111561), (2023).
  • Does auditory deprivation impairs statistical learning in the auditory modality?, Cognition, 10.1016/j.cognition.2021.105009, 222, (105009), (2022).
  • Musical Expertise Is Associated with Improved Neural Statistical Learning in the Auditory Domain, Cerebral Cortex, 10.1093/cercor/bhab128, 31, 11, (4877-4890), (2021).
  • Rhythmic Abilities of Children With Hearing Loss, Ear & Hearing, 10.1097/AUD.0000000000000926, 42, 2, (364-372), (2021).
  • Individual differences in musical ability are stable over time in childhood, Developmental Science, 10.1111/desc.13081, 24, 4, (2021).
  • Effects of auditory selective attention on neural phase: individual differences and short-term training, NeuroImage, 10.1016/j.neuroimage.2020.116717, 213, (116717), (2020).

View Options

Sign In Options

ASHA member? If so, log in with your ASHA website credentials for full access.

Member Login

View options

PDF

View PDF

Full Text

View Full Text

Figures

Tables

Media

Share

Share

Copy the content Link

Share