No AccessJournal of Speech, Language, and Hearing ResearchResearch Article17 Jul 2020

Design and Development of a Speech Intelligibility Test Based on Pseudowords in French: Why and How?


    The current intelligibility tests performed on speakers with atypical speech production are limited by the ability of listeners to restore distorted sequences. This results in a measure that is overvalued when compared with the real articulatory performance. In this article, we present a new intelligibility test in order to neutralize the commonly encountered bias in traditional perception-based assessments. We present the construction of the acoustic–phonetic decoding task and its first test during a perceptual judgment test of intelligibility and during a result comparison with a global perceptual evaluation.


    We developed a very large pseudoword directory including about 90,000 forms that respect French phonotactic constraints. From this directory, we have created lists of pseudowords intended to be recorded for the constitution of the corpus. These lists are established due to an algorithm integrating predefined linguistic constraints and produced by 47 speakers (nine healthy and 38 patients). We then performed a perceptual judgment of intelligibility test with 20 listeners who transcribed these productions.


    At the end of the data processing stage, we obtained a Perceived Phonological Deviation (PPD) score for each speaker that reflects the average number of features altered per phoneme. We then compared the PPD score with a global intelligibility score derived from a global perceptual assessment of intelligibility and of the alteration severity.


    The current findings confirm that a speech intelligibility test based on pseudowords in French achieves fine-grained PPD scores, which enables discrimination between patients and healthy speakers. Moreover, the PPD score is related to the global intelligibility score, especially in severity. Further studies are needed to better understand the discrimination power of this intelligibility test based on an acoustic–phonetic decoding task.


    • American National Standards Institute. (1969). American National Standard Methods for the Calculation of the Articulation Index (ANSI S3.55-1969).
    • André, C., Ghio, A., Cavé, C., & Teston, B. (2003). PERCEVAL: A computer-driven system for experimentation on auditory and visual perception. Paper presented at Proceedings of International Congress of Phonetic Sciences, Barcelona, Spain.
    • Astésano, C., Balaguer, M., Farinas, J., Fredouille, C., Ghio, A., Gaillard, P., Giusti, L., Laaridh, I., Lalain, M., Lepage, B., Mauclair, J., Nocaudie, O., Pinquier, J., Pont, O., Pouchoulin, G., Puech, M., Robert, D., Sicard, E., & Woisard, V. (2018). Carcinologic Speech Severity Index Project: A database of speech disorders productions to assess quality of life related to speech after cancer. Paper presented at the Eleventh International Conference on Language Resources and Evaluation Conference (LREC 2018), May 2018, Miyazaki, Japan.
    • Auzou, P., & Rolland-Monnoury, V. (2006). Batterie d'Evaluation Clinique de la Dysarthrie [Battery of clinical assessment for dysarthria] (1st ed.) Ortho Edition.
    • Balaguer, M., Boisguérin, A., Galtier, A., Gaillard, N., Puech, M., & Woisard, V. (2019). Assessment of impairment of intelligibility and of speech signal after oral cavity and oropharynx cancer. European Annals of Otorhinolaryngology, Head and Neck Diseases, 136(5), 347–352.
    • Bechet, F. (2001). LIA—PHON: Un système complet de phonétisation de textes [A complete system of automatic grapheme-to-phoneme transcription of texts]. Traitement Automatique des Langues, 42(1), 47–67.
    • Benoît, C., Grice, M., & Hazan, V. (1996). The SUS test: A method for the assessment of text-to-speech synthesis intelligibility using Semantically Unpredictable Sentences. Speech Communication, 18(4), 381–392.
    • Chomsky, N. (1957). Syntactic structures. Mouton.
    • Chomsky, N., & Halle, M. (1968). Sound pattern of English. Longman Higher Education.
    • Clements, G. N. (2009). The role of features in speech sound inventories. In E.Raimy & C.Cairns (Eds.), Contemporary views on architecture and representations in phonological theory (pp. 19–68). MIT Press.
    • Connolly, J. H. (1997). Quantifying target—Realization differences. Part I: Segments. Clinical Linguistics & Phonetics, 11(4), 267–287.
    • Dell, F. (1985). Les règles et les sons: Introduction à la phonologie générative [Rules and sounds: Introduction to generative phonology]. Hermann.
    • Dutrey, C., Adda-Decker, M., & Yamaguchi, N. (2016). Alignement de séquences phonétiques pour une analyse phonologique des erreurs de transcription automatique [Alignment of phonetic sequences for phonological analysis of automatic trancription errors] (pp. 46–54). Paper presented at JEP-TALN-RECITAL 2016, Paris, France.
    • Enderby, P. (1983). Frenchay Dysarthria Assessment. Pro-Ed.
    • Enderby, P., & Palmer, R. (2008). FDA-2: Frenchay Dysarthria Assessment–Second Edition: Examiner's manual. Pro-Ed.
    • Fogle, P. T. (2017). Essentials of communication sciences and disorders (2nd ed.). Jones & Bartlett Learning.
    • Fontan, L., Tardieu, J., Gaillard, P., Woisard, V., & Ruiz, R. (2015). Relationship between speech intelligibility and speech comprehension in babble noise. Journal of Speech, Language, and Hearing Research, 58(3), 977–986.
    • Ganong, W. F. (1980). Phonetic categorization in auditory word perception. Journal of Experimental Psychology: Human Perception and Performance, 6(1), 110–125.
    • Ghio, A. (1997). Achile: Un dispositif de décodage acoustico-phonétique et d'identification lexicale indépendant du locuteur à partir de modules mixtes [Achille : An acoustico-phonetic decoding and lexical device speaker independant from mixed modules] (Doctoral dissertation). Université d'Aix Marseille, Marseille, France.
    • Ghio, A., Lalain, M., Giusti, L., Pouchoulin, G., Robert, D., Rebourg, M., Fredouille, C., Laaridh, I., & Woisard, V. (2018). Une mesure d'intelligibilité par décodage acoustico-phonétique de pseudo-mots dans le cas de la parole atypique [A measure of intelligibility by acoustico-phonetic of pseudowords in the case of atypical speech] (pp. 285–293). Paper presented at XXXIIe Journées d'Etudes sur la Parole, 2018, Aix-en-Provence, France.
    • Ghio, A., Révis, J., Merienne, S., & Giovanni, A. (2013). Top-down mechanisms in dysphonia perception: The need for blind tests. Journal of Voice, 27(4), 481–485.
    • Ghio, A., & Rossi, M. (1995). Parallel distributed processes for speaker independent acoustic–phonetic decoding (pp. 272–275). Paper presented at International Congress of Phonetic Sciences (ICPhS), Stockholm, Sweden.
    • Jakobson, R., Fant, G., & Halle, M. (1951). Preliminaries to speech analysis. MIT Press.
    • Keintz, C. K., Bunton, K., & Hoit, J. D. (2007). Influence of visual information on the intelligibility of dysarthric speech. American Journal of Speech-Language Pathology, 16(3), 222–234.
    • Kent, R. D. (1992). Intelligibility in speech disorders: Theory, measurement and management. John Benjamins.
    • Kent, R. D., Miolo, G., & Bloedel, S. (1994). The intelligibility of children's speech: A review of evaluation procedures. American Journal of Speech-Language Pathology, 3(2), 81–95.
    • Kent, R. D., Weismer, G., Kent, J. F., & Rosenbek, J. C. (1989). Toward phonetic intelligibility testing in dysarthria. Journal of Speech and Hearing Disorders, 54(4), 482–499.
    • Kondrak, G. (2003). Phonetic alignment and similarity. Computers and the Humanities, 37, 273–291.
    • Laver, J., Wirz, S., Mackenzie, J., & Hiller, S. M. (1991). A perceptual protocol for the analysis of vocal profiles. In J.Laver (Ed.), The gift of speech (pp. 265–280). Edinburgh University Press.
    • Lindblom, B. (1990). On the communication process: Speaker–listener interaction and the development of speech. Augmentative and Alternative Communication, 6(4), 220–230.
    • Mackenzie Beck, J. (2005). Perceptual analysis of voice quality: The place of vocal profile analysis. In W. J.Hardcastle & J.Mackenzie Beck (Eds.), A figure of speech: A Festschrift for John Laver (pp. 285–322). Routledge.
    • Marczyk, A., Ghio, A., Lalain, M., Rebourg, M., FredouilleC., & Woisard, V. (2020). Assessing discriminating performance of an intelligibility index obtained from a reduced sample size. Paper presented at Language Resource and Evaluation Conference, Marseille, France.
    • McHenry, M. (2011). An exploration of listener variability in intelligibility judgments. American Journal of Speech-Language Pathology, 20(2), 119–123.
    • Meyer, T. K., Kuhn, J. C., Campbell, B. H., Marbella, A. M., Myers, K. B., & Layde, P. M. (2004). Speech intelligibility and quality of life in head and neck cancer survivors. The Laryngoscope, 114(11), 1977–1981.
    • New, B., Pallier, C., Ferrand, L., & Matos, R. (2001). Une base de données lexicales du français contemporain sur internet: LEXIQUE™ [A lexical database for contemporary French: LEXIQUE™]. L'année Psychologique, 101(3), 447–462.
    • Norris, D., McQueen, J. M., & Cutler, A. (2003). Perceptual learning in speech. Cognition Psychology, 47(2), 204–238.
    • Peckels, J., & Rossi, M. (1973). Le test diagnostic par paires minimales. Adaptation au Francais du “Diagnostic Rhyme Test” de W. D. Voiers [The minimum pair diagnostic test. French adaptation of “Diagnostic Rhyme Test”]. Revue d'acoustique, 27, 245–262.
    • R Core Team. (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
    • Wagner, R. A., & Fischer, M. J. (1974). The string-to-string correction problem. Journal of the Association for Computing Machinery, 21(1), 168–173.
    • Warren, R. M., & Warren, R. P. (1970). Auditory illusions and confusions. Scientific American, 223(6), 30–36.
    • Woisard, V., Espesser, R., Ghio, A., & Duez, D. (2013). De l'intelligibilité à la compréhensibilité de la parole, quelles mesures en pratique clinique [From intelligibility to comprehensibility of speech: Which measures in clinical practice]. Revue de Laryngologie, 134(1), 27–33.

    Additional Resources