Abstract
Purpose:
The purpose of this article is to consider how, alongside engineering advancements, noninvasive brain–computer interface (BCI) for augmentative and alternative communication (AAC; BCI-AAC) developments can leverage implementation science to increase the clinical impact of this technology. We offer the Consolidated Framework for Implementation Research (CFIR) as a structure to help guide future BCI-AAC research. Specifically, we discuss CFIR primary domains that include intervention characteristics, the outer and inner settings, the individuals involved in the intervention, and the process of implementation, alongside pertinent subdomains including adaptability, cost, patient needs and recourses, implementation climate, other personal attributes, and the process of engaging. The authors support their view with current citations from both the AAC and BCI-AAC fields.
Conclusions:
The article aimed to provide thoughtful considerations for how future research may leverage the CFIR to support meaningful BCI-AAC translation for those with severe physical impairments. We believe that, although significant barriers to BCI-AAC development still exist, incorporating implementation research may be timely for the field of BCI-AAC and help account for diversity in end users, navigate implementation obstacles, and support a smooth and efficient translation of BCI-AAC technology. Moreover, the sooner clinicians, individuals who use AAC, their support networks, and engineers collectively improve BCI-AAC outcomes and the efficiency of translation, the sooner BCI-AAC may become an everyday tool in the AAC arsenal.

References
-
Allison, B. (2009). The I of BCIs: Next generation interfaces for brain–computer interface systems that adapt to individual users.InJ. A. Jacko (Ed.), Human–computer interaction: Novel interaction methods and techniques (Vol. 2, pp. 558–568). Springer. https://doi.org/10.1007/978-3-642-02577-8_61 -
Andresen, E., Fried-Oken, M., Peters, B., & Patrick, D. (2016). Initial constructs for patient-centered outcome measures to evaluate brain–computer interfaces.Disability and Rehabilitation: Assistive Technology, 11(7), 548–557. https://doi.org/10.3109/17483107.2015.1027298 -
Bauer, M. S., Damschroder, L., Hagedorn, H., Smith, J., & Kilbourne, A. M. (2015). An introduction to implementation science for the non-specialist.BMC Psychology, 3(1), 32–12. https://doi.org/10.1186/s40359-015-0089-9 -
Beukelman, D. R., & Light, J. C. (2020). Augmentative and alternative communication: Supporting children and adults with complex communication needs (5th ed.). Brookes. -
Blain-Moraes, S., Schaff, R., Gruis, K. L., Huggins, J. E., & Wren, P. A. (2012). Barriers to and mediators of brain–computer interface user acceptance: Focus group findings.Ergonomics, 55(5), 516–525. https://doi.org/10.1080/00140139.2012.661082 -
Broomfield, K., Harrop, D., Judge, S., Jones, G., & Sage, K. (2019). Appraising the quality of tools used to record patient-reported outcomes in users of augmentative and alternative communication (AAC): A systematic review.Quality of Life Research, 28, 2669–2683. https://doi.org/10.1007/s11136-019-02228-3 -
Brumberg, J. S., Nguyen, A., Pitt, K. M., & Lorenz, S. D. (2018). Examining sensory ability, feature matching and assessment-based adaptation for a brain–computer interface using the steady-state visually evoked potential.Disability and Rehabilitation: Assistive Technology, 14(3), 241–249. https://doi.org/10.1080/17483107.2018.1428369 -
Brumberg, J. S., Pitt, K. M., Mantie-Kozlowski, A., & Burnison, J. D. (2018). Brain–computer interfaces for augmentative and alternative communication: A tutorial.American Journal of Speech-Language Pathology, 27(1), 1–12. https://doi.org/10.1044/2017_ajslp-16-0244 -
Burde, W., & Blankertz, B. (2006). Is the locus of control of reinforcement a predictor of brain–computer interface performance?.G. Müller-Putz, C. Brunner, R. Leeb, R. Scherer, A. Schlögl, S. Wriessnegger, & G. Pfurtscheller (Eds.), Proceedings of the 3rd international brain–computer interface workshop and training course (pp. 108–109). Verlag der Technischen Universität Graz. -
Chavarriaga, R., Fried-Oken, M., Kleih, S., Lotte, F., & Scherer, R. (2017). Heading for new shores! Overcoming pitfalls in BCI design.Brain–Computer Interfaces, 4(1–2), 60–73. https://doi.org/10.1080/2326263x.2016.1263916 -
Damschroder, L., Aron, D. C., Keith, R. E., Kirsh, S. R., Alexander, J. A., & Lowery, J. C. (2009). Fostering implementation of health services research findings into practice: A consolidated framework for advancing implementation science.Implementation Science, 4(1), 50. https://doi.org/10.1186/1748-5908-4-50 -
Damschroder, L., Hall, C., Gillon, L., Reardon, C., Kelley, C., Sparks, J., & Lowery, J. (2015). The Consolidated Framework for Implementation Research (CFIR): Progress to date, tools and resources, and plans for the future.Implementation Science, 10(S1), A12. https://doi.org/10.1186/1748-5908-10-S1-A12 -
da Silva-Sauer, L., Torre-Luque, A., Silva, J. S. C., & Fernández-Calvo, B. (2019). New perspectives for cognitive rehabilitation: Could brain–computer interface systems benefit people with dementia?.Psychology & Neuroscience, 12(1), 25–37. https://doi.org/10.1037/pne0000154 -
Debener, S., Minow, F., Emkes, R., Gandras, K., & de Vos, M. (2012). How about taking a low-cost, small, and wireless EEG for a walk?.Psychophysiology, 49(11), 1617–1621. https://doi.org/10.1111/j.1469-8986.2012.01471.x -
Donchin, E., Spencer, K. M., & Wijesinghe, R. (2000). The mental prosthesis: Assessing the speed of a P300-based brain–computer interface.IEEE Transactions on Rehabilitation Engineering, 8(2), 174–179. https://doi.org/10.1109/86.847808 -
Douglas, N. F., & Burshnic, V. L. (2018). Implementation science: Tackling the research to practice gap in communication sciences and disorders.Perspectives of the ASHA Special Interest Groups, 4(1), 3–7. https://doi.org/10.1044/2018_PERS-ST-2018-0000 -
Douglas, N. F., Campbell, W. N., & Hinckley, J. J. (2015). Implementation science: Buzzword or game changer?.Journal of Speech, Language, and Hearing Research, 58(6), S1827–S1836. https://doi.org/10.1044/2015_JSLHR-L-15-0302 -
Eccles, M. P., & Mittman, B. S. (2006). Welcome to implementation science.Implementation Science, 1, 1. https://doi.org/10.1186/1748-5908-1-1 -
Fager, S. K., Fried-Oken, M., Jakobs, T., & Beukelman, D. R. (2019). New and emerging access technologies for adults with complex communication needs and severe motor impairments: State of the science.Augmentative & Alternative Communication, 35(1), 13–25. https://doi.org/10.1080/07434618.2018.1556730 -
Frambach, R. T., & Schillewaert, N. (2002). Organizational innovation adoption: A multi-level framework of determinants and opportunities for future research.Journal of Business Research, 55(2), 163–176. https://doi.org/10.1016/S0148-2963(00)00152-1 -
Fried-Oken, M., Mooney, A., Peters, B., & Oken, B. (2013). A clinical screening protocol for the RSVP Keyboard brain–computer interface.Disability and Rehabilitation: Assistive Technology, 10(1), 11–18. https://doi.org/10.3109/17483107.2013.836684 -
Geronimo, A., & Simmons, Z. (2020). TeleBCI: Remote user training, monitoring, and communication with an evoked-potential brain–computer interface.Brain-Computer Interfaces, 7(3–4), 57–69. https://doi.org/10.1080/2326263x.2020.1848134 -
Geronimo, A., Stephens, H. E., Schiff, S. J., & Simmons, Z. (2015). Acceptance of brain–computer interfaces in amyotrophic lateral sclerosis.Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 16(3–4), 258–264. https://doi.org/10.3109/21678421.2014.969275 -
Glasgow, R. E., Vinson, C., Chambers, D., Khoury, M. J., Kaplan, R. M., & Hunter, C. (2012). National Institutes of Health approaches to dissemination and implementation science: Current and future directions.American Journal of Public Health, 102(7), 1274–1281. https://doi.org/10.2105/AJPH.2012.300755 -
Gosmanova, K. A., Carmack, C. S., Goldberg, D., Fitzpatrick, K., Zoltan, B., Zeitlin, D. M., Wolpaw, J. R., Maehle, O. A., Borge, A., & Vaughan, T. M. (2017). EEG-based brain–computer interface access to Tobii Dynavox Communicator 5[Paper presentation] .Rehabilitation Engineering and Assistive Technology Society of North America . Retrieved April 22, 2021, from https://www.resna.org/sites/default/files/conference/2017/cac/Gosmanova.html -
Guger, C., Krausz, G., Allison, B. Z., & Edlinger, G. (2012). Comparison of dry and gel based electrodes for P300 brain–computer interfaces.Frontiers in Neuroscience, 6, 60. https://doi.org/10.3389/fnins.2012.00060 -
Higginbotham, D. J., Shane, H., Russell, S., & Caves, K. (2007). Access to AAC: Present, past, and future.Augmentative and Alternative Communication, 23(3), 243–257. https://doi.org/10.1080/07434610701571058 -
Hill, K., Huggins, J., & Woodworth, C. (2021). Interprofessional practitioners' opinions on features and services for an augmentative and alternative communication brain-computer interface device.PM&R, 13(10), 1111–1121. https://doi.org/10.1002/pmrj.12525 -
Hill, K., Kovacs, T., & Shin, S. (2015). Critical issues using brain–computer interfaces for augmentative and alternative communication.Archives of Physical Medicine and Rehabilitation, 96(3), S8–S15. https://doi.org/10.1016/j.apmr.2014.01.034 -
Huggins, J. E., Guger, C., Ziat, M., Zander, T. O., Taylor, D., Tangermann, M., Soria-Frisch, A., Simeral, J., Scherer, R., Rupp, R., Ruffini, G., Robinson, D. K. R., Ramsey, N. F., Nijholt, A., Müller-Putz, G., McFarland, D. J., Mattia, D., Lance, B. J., Kindermans, P.-J., … Aernoutse, E. J. (2017). Workshops of the sixth international brain–computer interface meeting: Brain–computer interfaces past, present, and future.Brain-Computer Interfaces, 4(1–2), 3–36. https://doi.org/10.1080/2326263X.2016.1275488 -
Huggins, J. E., & Kovacs, T. (2018). Brain–computer interfaces for augmentative and alternative communication: Separating the reality from the hype.Perspectives of the ASHA Special Interest Groups, 3(12), 13–23. https://doi.org/10.1044/persp3.sig12.13 -
Huggins, J. E., Wren, P., & Gruis, K. (2011). What would brain–computer interface users want? Opinions and priorities of potential users with amyotrophic lateral sclerosis.Amyotrophic Lateral Sclerosis, 12(5), 318–324. https://doi.org/10.3109/17482968.2011.572978 -
Igbaria, M. (1993). User acceptance of microcomputer technology: An empirical test.Omega, 21(1), 73–90. https://doi.org/10.1016/0305-0483(93)90040-R -
Ikegami, S., Takano, K., Saeki, N., & Kansaku, K. (2011). Operation of a P300-based brain–computer interface by individuals with cervical spinal cord injury.Clinical Neurophysiology, 122(5), 991–996. https://doi.org/10.1016/j.clinph.2010.08.021 -
Johnson, J. M., Inglebret, E., Jones, C., & Ray, J. (2006). Perspectives of speech language pathologists regarding success versus abandonment of AAC.Augmentative and Alternative Communication, 22(2), 85–99. https://doi.org/10.1080/07434610500483588 -
Käthner, I., Kübler, A., & Halder, S. (2015). Comparison of eye tracking, electrooculography and an auditory brain–computer interface for binary communication: A case study with a participant in the locked-in state.Journal of NeuroEngineering and Rehabilitation, 12(1), 76. https://doi.org/10.1186/s12984-015-0071-z -
Kent-Walsh, J., & Binger, C. (2018). Methodological advances, opportunities, and challenges in AAC research.Augmentative and Alternative Communication, 34(2), 93–103. https://doi.org/10.1080/07434618.2018.1456560 -
Kilbourne, A. M., Glasgow, R. E., & Chambers, D. A. (2020). What can implementation science do for you? Key success stories from the field.Journal of General Internal Medicine, 35, 783–787. https://doi.org/10.1007/s11606-020-06174-6 -
Kinney-Lang, E., Kelly, D., Floreani, E. D., Jadavji, Z., Rowley, D., Zewdie, E. T., Anaraki, J. R., Bahari, H., Beckers, K., Castelane, K., Crawford, L., House, S., Rauh, C. A., Michaud, A., Mussi, M., Silver, J., Tuck, C., Adams, K., Andersen, J., … Kirton, A. (2020). Advancing brain–computer interface applications for severely disabled children through a multidisciplinary national network: Summary of the inaugural pediatric BCI Canada meeting.Frontiers in Human Neuroscience, 14, 593883. https://doi.org/10.3389/fnhum.2020.593883 -
Kleih, S. C., Gottschalt, L., Teichlein, E., & Weilbach, F. X. (2016). Toward a P300 based brain–computer interface for aphasia rehabilitation after stroke: Presentation of theoretical considerations and a pilot feasibility study.Frontiers in Human Neuroscience, 10, 547. https://doi.org/10.3389/fnhum.201 -
Kögel, J., Jox, R. J., & Friedrich, O. (2020). What is it like to use a BCI?–Insights from an interview study with brain–computer interface users.BMC Medical Ethics, 21, 2. https://doi.org/10.1186/s12910-019-0442-2 -
Kübler, A., Holz, E., Riccio, A., Zickler, C., Kaufmann, T., Kleih, S., Staiger-Sälzer, P., Desideri, L., Hoogerwerf, E., & Mattia, D. (2014). The user-centered design as novel perspective for evaluating the usability of BCI-controlled applications.PLOS ONE, 9(12), Article e112392. https://doi.org/10.1371/journal.pone.0112392 -
Light, J., & McNaughton, D. (2015). Designing AAC research and intervention to improve outcomes for individuals with complex communication needs.Augmentative and Alternative Communication, 31(2), 85–96. https://doi.org/10.3109/07434618.2015.1036458 -
Lorenz, R., Pascual, J., Blankertz, B., & Vidaurre, C. (2014). Towards a holistic assessment of the user experience with hybrid BCIs.Journal of Neural Engineering, 11(3), Article 035007. https://doi.org/10.1088/1741-2560/11/3/035007 -
Lotte, F., Larrue, F., & Mühl, C. (2013). Flaws in current human training protocols for spontaneous brain–computer interfaces: Lessons learned from instructional design.Frontiers in Human Neuroscience, 7, 568. https://doi.org/10.3389/fnhum.2013.00568 -
Mayaud, L., Congedo, M., Van Laghenhove, A., Orlikowski, D., Figère, M., Azabou, E., & Cheliout-Heraut, F. (2013). A comparison of recording modalities of P300 event-related potentials (ERP) for brain–computer interface (BCI) paradigm.Neurophysiologie Clinique/Clinical Neurophysiology, 43(4), 217–227. https://doi.org/10.1016/j.neucli.2013.06.002 -
Mendel, P., Meredith, L. S., Schoenbaum, M., Sherbourne, C. D., & Wells, K. B. (2008). Interventions in organizational and community context: A framework for building evidence on dissemination and implementation in health services research.Administration and Policy in Mental Health and Mental Health Services Research, 35(1–2), 21–37. https://doi.org/10.1007/s10488-007-0144-9 -
Meyers, D. C., Durlak, J. A., & Wandersman, A. (2012). The quality implementation framework: A synthesis of critical steps in the implementation process.American Journal of Community Psychology, 50(3–4), 462–480. https://doi.org/10.1007/s10464-012-9522-x -
Moir, T. (2018). Why is implementation science important for intervention design and evaluation within educational settings?, Frontiers in Education, 3, 61. https://doi.org/10.3389/feduc.2018.00061 -
Nilsen, P. (2015). Making sense of implementation theories, models and frameworks.Implementation Science, 10, 53. https://doi.org/10.1186/s13012-015-0242-0 -
Nilsen, P., & Bernhardsson, S. (2019). Context matters in implementation science: A scoping review of determinant frameworks that describe contextual determinants for implementation outcomes.BMC Health Services Research, 19(1), 189. https://doi.org/10.1186/s12913-019-4015-3 -
Ogden, T., & Fixsen, D. L. (2014). Implementation Science.Zeitschrift für Psychologie, 222(1), 4–11. https://doi.org/10.1027/2151-2604/a000160 -
Olswang, L., & Prelock, P. (2015). Bridging the gap between research and practice: Implementation science.Journal of Speech, Language, and Hearing Research, 58(6), S1818–S1826. https://doi.org/10.1044/2015_JSLHR-L-14-0305 -
Pasqualotto, E., Matuz, T., Federici, S., Ruf, C. A., Bartl, M., Olivetti Belardinelli, M., Birbaumer, N., & Halder, S. (2015). Usability and workload of access technology for people with severe motor impairment: A comparison of brain–computer interfacing and eye tracking.Neurorehabilitation and Neural Repair, 29(10), 950–957. https://doi.org/10.1177/1545968315575611 -
Peters, B., Bieker, G., Heckman, S. M., Huggins, J. E., Wolf, C., Zeitlin, D., & Fried-Oken, M. (2015). Brain–computer interface users speak up: The virtual users' forum at the 2013 international brain–computer interface meeting.Archives of Physical Medicine and Rehabilitation, 96(3), S33–S37. https://doi.org/10.1016/j.apmr.2014.03.037 -
Peters, B., Mooney, A., Oken, B., & Fried-Oken, M. (2016). Soliciting BCI user experience feedback from people with severe speech and physical impairments.Brain-Computer Interfaces, 3(1), 47–58. https://doi.org/10.1080/2326263x.2015.1138056 -
Peters, D. H., Adam, T., Alonge, O., Agyepong, I. A., & Tran, N. (2013). Implementation research: What it is and how to do it.BMJ, 347, 731–736. https://doi.org/10.1136/bmj.f6753 -
Pitt, K. M., & Brumberg, J. S. (2018a). A screening protocol incorporating brain–computer interface feature matching considerations for augmentative and alternative communication.Assistive Technology, 32(3), 161–172. https://doi.org/10.1080/10400435.2018.1512175 -
Pitt, K. M., & Brumberg, J. S. (2018b). Guidelines for feature matching assessment of brain–computer interfaces for augmentative and alternative communication.American Journal of Speech-Language Pathology, 27(3), 950–964. https://doi.org/10.1044/2018_ajslp-17-0135 -
Pitt, K. M., & Brumberg, J. S. (2021a). Evaluating person-centered factors associated with brain–computer interface access to a commercial augmentative and alternative communication paradigm.Assistive Technology, 1–10. https://doi.org/10.1080/10400435.2021.1872737 -
Pitt, K. M., & Brumberg, J. S. (2021b). Evaluating the perspectives of those with severe physical impairments while learning BCI control of a commercial augmentative and alternative communication paradigm.Assistive Technology, 1–9. https://doi.org/10.1080/10400435.2021.1949405 -
Pitt, K. M., Brumberg, J. S., Burnison, J. D., Mehta, J., & Kidwai, J. (2019). Behind the scenes of noninvasive brain–computer interfaces: A review of electroencephalography signals, how they are recorded, and why they matter.Perspectives of the ASHA Special Interests Groups, 4(6), 1622–1636. https://doi.org/10.1044/2019_PERS-19-00059 -
Pitt, K. M., Brumberg, J. S., & Pitt, A. R. (2019). Evaluating person-centered factors associated with brain–computer interface access to a commercial augmentative and alternative communication paradigm.Assistive Technology Outcomes and Benefits, 13, 1–10. https://doi.org/10.1080/10400435.2021.1872737 -
Pouplin, S., Roche, N., Vaugier, I., Cabanilles, S., Hugeron, C., & Bensmail, D. (2016). Text input speed in persons with cervical spinal cord injury.Spinal Cord, 54(2), 158–162. https://doi.org/10.1038/sc.2015.147 -
Proctor, E., Silmere, H., Raghavan, R., Hovmand, P., Aarons, G., Bunger, A., Griffey, R., & Hensley, M. (2011). Outcomes for implementation research: Conceptual distinctions, measurement challenges, and research agenda.Administration and Policy in Mental Health, 38(2), 65–76. https://doi.org/10.1007/s10488-010-0319-7 -
Rosenberg, R. N. (2003). Translating biomedical research to the bedside: A national crisis and a call to action.JAMA, 289(10), 1305–1306. https://doi.org/10.1001/jama.289.10.1305 -
Rosenberg, S., & Beukelman, D. (1987). The Participation Model.InC. A. Coston (Ed.), Proceedings of the national planners conference on assistive device service delivery (pp. 159–161). The Association for the Advancement of Rehabilitation Technology. -
Saha, S., Mamun, K. A., Ahmed, K., Mostafa, R., Naik, G. R., Darvishi, S., Khondaker, A. H., & Baumert, M. (2021). Progress in brain computer interface: Challenges and opportunities.Frontiers in Systems Neuroscience, 15, 578875. https://doi.org/10.3389/fnsys.2021.578875 -
Scherer, R., Billinger, M., Wagner, J., Schwarz, A., Hettich, D. T., Bolinger, E., Garcia, M. L., Navarro, J., & Müller-Putz, G. (2015). Thought-based row-column scanning communication board for individuals with cerebral palsy.Annals of Physical and Rehabilitation Medicine, 58(1), 14–22. https://doi.org/10.1016/j.rehab.2014.11.005 -
Shahriari, Y., Vaughan, T. M., McCane, L. M., Allison, B. Z., Wolpaw, J. R., & Krusienski, D. J. (2019). An exploration of BCI performance variations in people with amyotrophic lateral sclerosis using longitudinal EEG data.Journal of Neural Engineering, 16(5), Article 056031. https://doi.org/10.1088/1741-2552/ab22ea -
Shenoy, P., Krauledat, M., Blankertz, B., Rao, R., & Müller, K. (2006). Towards adaptive classification for BCI.Journal of Neural Engineering, 3(1), R13–R23. https://doi.org/10.1088/1741-2560/3/1/r02 -
Stevens, E. R., Shelley, D., & Boden-Albala, B. (2020). Perceptions of barriers and facilitators to engaging in implementation science: A qualitative study.Public Health, 185, 318–323. https://doi.org/10.1016/j.puhe.2020.06.016 -
Talukdar, U., Hazarika, S. M., & Gan, J. Q. (2019). Motor imagery and mental fatigue: Inter-relationship and EEG based estimation.Journal of Computational Neuroscience, 46, 55–76. https://doi.org/10.1007/s10827-018-0701-0 -
Taylor, M. J., McNicholas, C., Nicolay, C., Darzi, A., Bell, D., & Reed, J. E. (2014). Systematic review of the application of the plan–do–study–act method to improve quality in healthcare.BMJ Quality & Safety, 23(4), 290–298. https://doi.org/10.1136/bmjqs-2013-001862 -
Thompson, D. E., Quitadamo, L. R., Mainardi, L., Laghari, K., Gao, S., Kindermans, P.-J., Simeral, J. D., Fazel-Rezai, R., Matteucci, M., Falk, T. H., Bianchi, L., Chestek, C. A., & Huggins, J. E. (2014). Performance measurement for brain–computer or brain–machine interfaces: A tutorial.Journal of Neural Engineering, 11(3), Article 035001. https://doi.org/10.1088/1741-2560/11/3/035001 -
Tohidast, S., Mansuri, B., Bagheri, R., & Azimi, H. (2020). Provision of speech-language pathology services for the treatment of speech and language disorders in children during the COVID-19 pandemic: Problems, concerns, and solutions.International Journal of Pediatric Otorhinolaryngology, 138, 110262. https://doi.org/10.1016/j.ijporl.2020.110262 -
Warren, B., & Randolph, A. B. (2019). Facebrain: A P300 BCI to Facebook.InF. D. Davis, R. Riedl, J. von Brocke, P.-M. Léger, & A. B. Randolph (Eds.), Information systems and neuroscience: NeuroIS Retreat 2018 (pp. 119–124). Springer. https://doi.org/10.1007/978-3-030-01087-4_14 -
Wolpaw, J. R., Bedlack, R. S., Reda, D. J., Ringer, R. J., Banks, P. G., Vaughan, T. M., Heckman, S. M., McCane, L. M., Carmack, C. S., Winden, S., McFarland, D. J., Sellers, E. W., Shi, H., Paine, T., Higgins, D. S., Lo, A. C., Patwa, H. S., Hill, K. J., Huang, G. D., & Ruff, R. L. (2018). Independent home use of a brain–computer interface by people with amyotrophic lateral sclerosis.Neurology, 91(3), e258–e267. https://doi.org/10.1212/wnl.0000000000005812 - World Health Organization. (2002). Towards a common language for functioning, disability and health: ICF. https://www.who.it/classifications/icf/icfbeginnersguide.pdf
-
Yorkston, K., & Baylor, C. (2019). Patient-reported outcomes measures: An introduction for clinicians.Perspectives of the ASHA Special Interest Groups, 4(1), 8–15. https://doi.org/10.1044/2018_PERS-ST-2018-0001 -
Zhang, J., Jadavji, Z., Zewdie, E., & Kirton, A. (2019). Evaluating if children can use simple brain computer interfaces.Frontiers in Human Neuroscience, 13, 24. https://doi.org/10.3389/fnhum.2019.00024