No AccessJournal of Speech, Language, and Hearing ResearchResearch Article12 Jan 2022

Beyond Recognition: Visual Contributions to Verbal Working Memory

    Purpose:

    It is well recognized that adding the visual to the acoustic speech signal improves recognition when the acoustic signal is degraded, but how that visual signal affects postrecognition processes is not so well understood. This study was designed to further elucidate the relationships among auditory and visual codes in working memory, a postrecognition process.

    Design:

    In a main experiment, 80 young adults with normal hearing were tested using an immediate serial recall paradigm. Three types of signals were presented (unprocessed speech, vocoded speech, and environmental sounds) in three conditions (audio-only, audio–video with dynamic visual signals, and audio–picture with static visual signals). Three dependent measures were analyzed: (a) magnitude of the recency effect, (b) overall recall accuracy, and (c) response times, to assess cognitive effort. In a follow-up experiment, 30 young adults with normal hearing were tested largely using the same procedures, but with a slight change in order of stimulus presentation.

    Results:

    The main experiment produced three major findings: (a) unprocessed speech evoked a recency effect of consistent magnitude across conditions; vocoded speech evoked a recency effect of similar magnitude to unprocessed speech only with dynamic visual (lipread) signals; environmental sounds never showed a recency effect. (b) Dynamic and static visual signals enhanced overall recall accuracy to a similar extent, and this enhancement was greater for vocoded speech and environmental sounds than for unprocessed speech. (c) All visual signals reduced cognitive load, except for dynamic visual signals with environmental sounds. The follow-up experiment revealed that dynamic visual (lipread) signals exerted their effect on the vocoded stimuli by enhancing phonological quality.

    Conclusions:

    Acoustic and visual signals can combine to enhance working memory operations, but the source of these effects differs for phonological and nonphonological signals. Nonetheless, visual information can support better postrecognition processes for patients with hearing loss.

    References

    Additional Resources