No access
Research Article
1 November 2023

Your Vestibular Thresholds May Be Lower Than You Think: Cognitive Biases in Vestibular Psychophysics

Publication: American Journal of Audiology
Volume 32, Number 3S
Pages 730-738

Abstract

Purpose:

Recently, there has been a surge of interest in measuring vestibular perceptual thresholds, which quantify the smallest motion that a subject can reliably perceive, to study physiology and pathophysiology. These thresholds are sensitive to age, pathology, and postural performance. Threshold tasks require decisions to be made in the presence of uncertainty. Since humans often rely on past information when making decisions in the presence of uncertainty, we hypothesized that (a) perceptual responses are affected by their preceding trial; (b) perceptual responses tend to be biased opposite of the “preceding response” because of cognitive biases but are not biased by the “preceding stimulus”; and (c) when fits do not account for this cognitive bias, thresholds are overestimated. To our knowledge, these hypotheses are unaddressed in vestibular and direction-recognition tasks.

Conclusions:

Results in normal subjects supported each hypothesis. Subjects tended to respond opposite of their preceding response (not the preceding stimulus), indicating a cognitive bias, and this caused an overestimation of thresholds. Using an enhanced model (MATLAB code provided) that considered these effects, average thresholds were lower (5.5% for yaw, 7.1% for interaural). Since the results indicate that the magnitude of cognitive bias varies across subjects, this enhanced model can reduce measurement variability and potentially improve the efficiency of data collection.

Get full access to this article

View all available purchase options and get full access to this article.

References

Agrawal, Y., Pineault, K. G., & Semenov, Y. R. (2018). Health-related quality of life and economic burden of vestibular loss in older adults. Laryngoscope Investigative Otolaryngology, 3(1), 8–15.
Benson, A. J., Hutt, E. C., & Brown, S. F. (1989). Thresholds for the perception of whole body angular movement about a vertical axis. Aviation, Space, and Environmental Medicine, 60(3), 205–213. http://www.ncbi.nlm.nih.gov/pubmed/2712798
Bermúdez Rey, M. C., Clark, T. K., Wang, W., Leeder, T., Bian, Y., & Merfeld, D. M. (2016). Vestibular perceptual thresholds increase above the age of 40. Frontiers in Neurology, 7(162), 162.
Bosch, E., Fritsche, M., Ehinger, B. V., & de Lange, F. P. (2020). Opposite effects of choice history and evidence history resolve a paradox of sequential choice bias. Journal of Vision, 20(12), 9.
Bremova, T., Caushaj, A., Ertl, M., Strobl, R., Bottcher, N., Strupp, M., & MacNeilage, P. R. (2016). Comparison of linear motion perception thresholds in vestibular migraine and Menière's disease. European Archives of Oto-Rhino-Laryngology, 273(10), 2931–2939.
Butler, J. S., Smith, S. T., Campos, J. L., & Bulthoff, H. H. (2010). Bayesian integration of visual and vestibular signals for heading. Journal of Vision, 10(11), 23.
Chang, N. Y., Hiss, M. M., Sanders, M. C., Olomu, O. U., MacNeilage, P. R., Uchanski, R. M., & Hullar, T. E. (2014). Vestibular perception and the vestibulo-ocular reflex in young and older adults. Ear and Hearing, 35(5), 565–570.
Chaudhuri, S. E., Karmali, F., & Merfeld, D. M. (2013). Whole body motion-detection tasks can yield much lower thresholds than direction-recognition tasks: Implications for the role of vibration. Journal of Neurophysiology, 110(12), 2764–2772.
Clark, T. K., & Merfeld, D. M. (2021). Statistical approaches to identifying lapses in psychometric response data. Psychonomic Bulletin & Review, 28(5), 1433–1457.
Cousins, S., Kaski, D., Cutfield, N., Seemungal, B., Golding, J. F., Gresty, M., Glasauer, S., & Bronstein, A. M. (2013). Vestibular perception following acute unilateral vestibular lesions. PLOS ONE, 8(5), Article e61862.
Crane, B. T. (2012). Roll aftereffects: Influence of tilt and inter-stimulus interval. Experimental Brain Research, 223(1), 89–98.
Crane, B. T. (2016). Perception of combined translation and rotation in the horizontal plane in humans. Journal of Neurophysiology, 116(3), 1275–1285.
Diaz-Artiles, A., & Karmali, F. (2021). Vestibular precision at the level of perception, eye movements, posture, and neurons. Neuroscience, 468, 282–320.
Diaz-Artiles, A., Priesol, A. J., Clark, T. K., Sherwood, D. P., Oman, C. M., Young, L. R., & Karmali, F. (2017). The impact of oral promethazine on human whole-body motion perceptual thresholds. Journal of the Association for Research in Otolaryngology, 18(4), 581–590.
Fetsch, C. R., Turner, A. H., DeAngelis, G. C., & Angelaki, D. E. (2009). Dynamic reweighting of visual and vestibular cues during self-motion perception. The Journal of Neuroscience, 29(49), 15601–15612.
Fründ, I., Wichmann, F. A., & Macke, J. H. (2014). Quantifying the effect of intertrial dependence on perceptual decisions. Journal of Vision, 14(7), 9.
Garcia-Perez, M. A., & Alcala-Quintana, R. (2013). Shifts of the psychometric function: Distinguishing bias from perceptual effects. Quarterly Journal of Experimental Psychology, 66(2), 319–337.
Grabherr, L., Nicoucar, K., Mast, F. W., & Merfeld, D. M. (2008). Vestibular thresholds for yaw rotation about an earth-vertical axis as a function of frequency. Experimental Brain Research, 186(4), 677–681.
Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. Wiley.
Haburcakova, C., Lewis, R. F., & Merfeld, D. M. (2012). Frequency dependence of vestibuloocular reflex thresholds. Journal of Neurophysiology, 107(3), 973–983.
Hartmann, M., Haller, K., Moser, I., Hossner, E.-J., & Mast, F. W. (2014). Direction detection thresholds of passive self-motion in artistic gymnasts. Experimental Brain Research, 232(4), 1249–1258.
Karmali, F., Bermúdez Rey, M. C., Clark, T. K., Wang, W., & Merfeld, D. M. (2017). Multivariate analyses of balance test performance, vestibular thresholds, and age. Frontiers in Neurology, 8, 578.
Karmali, F., Chaudhuri, S. E., Yi, Y., & Merfeld, D. M. (2016). Determining thresholds using adaptive procedures and psychometric fits: Evaluating efficiency using theory, simulations, and human experiments. Experimental Brain Research, 234(3), 773–789.
Karmali, F., Goodworth, A. D., Valko, Y., Leeder, T., Peterka, R. J., & Merfeld, D. M. (2021). The role of vestibular cues in postural sway. Journal of Neurophysiology, 125(2), 672–686.
Karmali, F., Lim, K., & Merfeld, D. M. (2013). Vestibular vs. vision: A comparison of perceptual precision in roll tilt. Sensing Motion for Action, Montreal.
Karmali, F., Lim, K., & Merfeld, D. M. (2014). Visual and vestibular perceptual thresholds each demonstrate better precision at specific frequencies and also exhibit optimal integration. Journal of Neurophysiology, 111(12), 2393–2403.
King, S., Dahlem, K., Karmali, F., Stankovic, K. M., Welling, D. B., & Lewis, R. F. (2022). Imbalance and dizziness caused by unilateral vestibular schwannomas correlate with vestibulo-ocular reflex precision and bias. Journal of Neurophysiology, 127(2), 596–606.
King, S., Priesol, A. J., Davidi, S. E., Merfeld, D. M., Ehtemam, F., & Lewis, R. F. (2019). Self-motion perception is sensitized in vestibular migraine: Pathophysiologic and clinical implications. Scientific Reports, 9(1), Article 14323.
Lee, T. L., Shayman, C. S., Oh, Y., Peterka, R. J., & Hullar, T. E. (2020). Reliability of vestibular perceptual threshold testing about the yaw axis. Ear and Hearing, 41(6), 1772–1774.
Leek, M. R. (2001). Adaptive procedures in psychophysical research. Perception & Psychophysics, 63(8), 1279–1292.
Lewis, R. F., Priesol, A. J., Nicoucar, K., Lim, K., & Merfeld, D. M. (2011). Abnormal motion perception in vestibular migraine. Laryngoscope, 121(5), 1124–1125.
Lim, K., Wang, W., & Merfeld, D. M. (2017). Unbounded evidence accumulation characterizes subjective visual vertical forced-choice perceptual choice and confidence. Journal of Neurophysiology, 118(5), 2636–2653.
MacNeilage, P. R., Banks, M. S., DeAngelis, G. C., & Angelaki, D. E. (2010). Vestibular heading discrimination and sensitivity to linear acceleration in head and world coordinates. The Journal of Neuroscience, 30(27), 9084–9094.
Madhani, A., Lewis, R. F., & Karmali, F. (2022). How peripheral vestibular damage affects velocity storage: A causative explanation. Journal of the Association for Research in Otolaryngology, 23(4), 551–566.
Merfeld, D. M. (2011). Signal detection theory and vestibular thresholds: I. Basic theory and practical considerations. Experimental Brain Research, 210(3–4), 389–405.
Merfeld, D. M., Park, S., Gianna-Poulin, C., Black, F. O., & Wood, S. (2005). Vestibular perception and action employ qualitatively different mechanisms. I. Frequency response of VOR and perceptual responses during translation and tilt. Journal of Neurophysiology, 94(1), 186–198.
Merfeld, D. M., Priesol, A., Lee, D., & Lewis, R. F. (2010). Potential solutions to several vestibular challenges facing clinicians. Journal of Vestibular Research, 20(1–2), 71–77.
Nouri, S., & Karmali, F. (2018). Variability in the vestibulo-ocular reflex and vestibular perception. Neuroscience, 393, 350–365.
Priesol, A. J., Cao, M., Brodley, C. E., & Lewis, R. F. (2015). Clinical vestibular testing assessed with machine-learning algorithms. JAMA Otolaryngology—Head & Neck Surgery, 141(4), 364–372.
Priesol, A. J., Valko, Y., Merfeld, D. M., & Lewis, R. F. (2014). Motion perception in patients with idiopathic bilateral vestibular hypofunction. Otolaryngology—Head & Neck Surgery, 150(6), 1040–1042.
Roditi, R. E., & Crane, B. T. (2012). Suprathreshold asymmetries in human motion perception. Experimental Brain Research, 219(3), 369–379.
Rosenberg, M., Galvan-Garza, R., Clark, T., Sherwood, D., Young, L., & Karmali, F. (2018). Human manual control precision depends on vestibular sensory precision and gravitational magnitude. Journal of Neurophysiology, 120(6), 3187–3197.
Soyka, F., Robuffo, G. P., Beykirch, K., & Bulthoff, H. H. (2011). Predicting direction detection thresholds for arbitrary translational acceleration profiles in the horizontal plane. Experimental Brain Research, 209(1), 95–107.
Suri, K., & Clark, T. K. (2020). Human vestibular perceptual thresholds for pitch tilt are slightly worse than for roll tilt across a range of frequencies. Experimental Brain Research, 238(6), 1499–1509.
Treutwein, B., & Strasburger, H. (1999). Fitting the psychometric function. Perception & Psychophysics, 61(1), 87–106.
Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185(4157), 1124–1131.
Valko, Y., Lewis, R. F., Priesol, A. J., & Merfeld, D. M. (2012). Vestibular labyrinth contributions to human whole-body motion discrimination. Journal of Neuroscience, 32(39), 13537–13542.
Wagner, A. R., Kobel, M. J., & Merfeld, D. M. (2021). Impact of canal–otolith integration on postural control. Frontiers in Integrative Neuroscience, 15, 773008.
Yi, Y., & Merfeld, D. M. (2016). A quantitative confidence signal detection model: 1. Fitting psychometric functions. Journal of Neurophysiology, 115(4), 1932–1945.
Yi, Y., Wang, W., & Merfeld, D. M. (2019). A quantitative confidence signal detection model: 2. Confidence analysis. Journal of Neurophysiology, 122(3), 904–921.

Information & Authors

Information

Published In

American Journal of Audiology
Volume 32Number 3SNovember 2023
Pages: 730-738
PubMed: 37084775

History

  • Received: Oct 7, 2022
  • Revised: Dec 23, 2022
  • Accepted: Feb 8, 2023
  • Published online: Apr 21, 2023
  • Published in issue: Nov 1, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Elena Lopez-Contreras Gonzalez https://orcid.org/0000-0002-8659-7551
Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear, Boston
Department of Otolaryngology–Head and Neck Surgery, Harvard Medical School, Boston, MA
Susan A. King
Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear, Boston
Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear, Boston
Department of Otolaryngology–Head and Neck Surgery, Harvard Medical School, Boston, MA

Notes

Disclosure: Faisal Karmal has received grant funding from Decibel Therapeutics for work not related to this study. The authors have declared that no competing financial or nonfinancial interests existed at the time of publication.
Correspondence to Faisal Karmali: [email protected]
Editor-in-Chief: Erin M. Picou
Editor: Robert Peterka
Publisher Note: This article is part of the Special Issue: Select Papers From the National Center for Rehabilitative Auditory Research Conference.

Metrics & Citations

Metrics

Article Metrics
View all metrics



Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

For more information or tips please see 'Downloading to a citation manager' in the Help menu.

Citing Literature

  • Vestibular Disorders: From Cause to Cure. Proceedings From the 10th Biennial Conference of the National Center for Rehabilitative Auditory Research, American Journal of Audiology, 10.1044/2023_AJA-23-00137, 32, 3S, (671-673), (2023).

View Options

Sign In Options

ASHA member? If so, log in with your ASHA website credentials for full access.

Member Login

View options

PDF

View PDF

Full Text

View Full Text

Figures

Tables

Media

Share

Share

Copy the content Link

Share