No access
Research Article
11 December 2023

Automating Intended Target Identification for Paraphasias in Discourse Using a Large Language Model

Publication: Journal of Speech, Language, and Hearing Research
Volume 66, Number 12
Pages 4949-4966

Abstract

Purpose:

To date, there are no automated tools for the identification and fine-grained classification of paraphasias within discourse, the production of which is the hallmark characteristic of most people with aphasia (PWA). In this work, we fine-tune a large language model (LLM) to automatically predict paraphasia targets in Cinderella story retellings.

Method:

Data consisted of 332 Cinderella story retellings containing 2,489 paraphasias from PWA, for which research assistants identified their intended targets. We supplemented these training data with 256 sessions from control participants, to which we added 2,415 synthetic paraphasias. We conducted four experiments using different training data configurations to fine-tune the LLM to automatically “fill in the blank” of the paraphasia with a predicted target, given the context of the rest of the story retelling. We tested the experiments' predictions against our human-identified targets and stratified our results by ambiguity of the targets and clinical factors.

Results:

The model trained on controls and PWA achieved 50.7% accuracy at exactly matching the human-identified target. Fine-tuning on PWA data, with or without controls, led to comparable performance. The model performed better on targets with less human ambiguity and on paraphasias from participants with fluent or less severe aphasia.

Conclusions:

We were able to automatically identify the intended target of paraphasias in discourse using just the surrounding language about half of the time. These findings take us a step closer to automatic aphasic discourse analysis. In future work, we will incorporate phonological information from the paraphasia to further improve predictive utility.

Supplemental Material:

Get full access to this article

View all available purchase options and get full access to this article.

References

Adams, J., Bedrick, S., Fergadiotis, G., Gorman, K., & van Santen, J. (2017). Target word prediction and paraphasia classification in spoken discourse. BioNLP, 2017, 1–8.
Balagopalan, A., Eyre, B., Rudzicz, F., & Novikova, J. (2020). To BERT or not to BERT: Comparing speech and language-based approaches for Alzheimer's disease detection. Interspeech, 2020, 2167–2171.
Belkin, M., Hsu, D., Ma, S., & Mandal, S. (2019). Reconciling modern machine-learning practice and the classical bias–variance trade-off. Proceedings of the National Academy of Sciences of the United States of America, 116(32), 15849–15854.
Bock, K. (1995). Sentence production: From mind to mouth. In J. L. Miller & P. D. Eimas (Eds.), Speech, language, and communication (pp. 181–216). Elsevier.
Breimaier, H. E., Heckemann, B., Halfens, R. J. G., & Lohrmann, C. (2015). The consolidated framework for implementation research (CFIR): A useful theoretical framework for guiding and evaluating a guideline implementation process in a hospital-based nursing practice. BMC Nursing, 14(1), Article 43.
Bryant, L., Spencer, E., Ferguson, A., Craig, H., Colyvas, K., & Worrall, L. (2013). Propositional idea density in aphasic discourse. Aphasiology, 27(8), 992–1009.
Brysbaert, M., & New, B. (2009). Moving beyond Kučera and Francis: A critical evaluation of current word frequency norms and the introduction of a new and improved word frequency measure for American English. Behavior Research Methods, 41(4), 977–990.
Butterworth, B., & Howard, D. (1987). Paragrammatisms. Cognition, 26(1), 1–37.
Casilio, M., Fergadiotis, G., Salem, A. C., Gale, R. C., McKinney-Bock, K., & Bedrick, S. (2023). ParAlg: A paraphasia algorithm for multinomial classification of picture naming errors. Journal of Speech, Language, and Hearing Research, 66(3), 966–986.
Chatzoudis, G., Plitsis, M., Stamouli, S., Dimou, A., Katsamanis, N., & Katsouros, V. (2022). Zero-shot cross-lingual aphasia detection using automatic speech recognition. Proceedings of Interspeech 2022, 2178–2182.
Cho-Reyes, S., & Thompson, C. K. (2012). Verb and sentence production and comprehension in aphasia: Northwestern Assessment of Verbs and Sentences (NAVS). Aphasiology, 26(10), 1250–1277.
Clark, J. H., Garrette, D., Turc, I., & Wieting, J. (2022). Canine: Pre-training an efficient tokenization-free encoder for language representation. Transactions of the Association for Computational Linguistics, 10, 73–91.
Cruice, M., Worrall, L., Hickson, L., & Murison, R. (2003). Finding a focus for quality of life with aphasia: Social and emotional health, and psychological well-being. Aphasiology, 17(4), 333–353.
Damschroder, L. J., Aron, D. C., Keith, R. E., Kirsh, S. R., Alexander, J. A., & Lowery, J. C. (2009). Fostering implementation of health services research findings into practice: A consolidated framework for advancing implementation science. Implementation Science, 4(1), Article 50.
Day, M., Dey, R. K., Baucum, M., Paek, E. J., Park, H., & Khojandi, A. (2021). Predicting severity in people with aphasia: A natural language processing and machine learning approach. 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 2299–2302.
Dell, G. S. (1986). A spreading-activation theory of retrieval in sentence production. Psychological Review, 93(3), 283–321.
Dell, G. S., Chang, F., & Griffin, Z. M. (1999). Connectionist models of language production: Lexical access and grammatical encoding. Cognitive Science, 23(4), 517–542.
Dell, G. S., Martin, N., & Schwartz, M. F. (2007). A case-series test of the interactive two-step model of lexical access: Predicting word repetition from picture naming. Journal of Memory and Language, 56(4), 490–520.
Dell, G. S., Schwartz, M. F., Martin, N., Saffran, E. M., & Gagnon, D. A. (1997). Lexical access in aphasic and nonaphasic speakers. Psychological Review, 104(4), 801–838.
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), 4171–4186.
Feng, S. Y., Gangal, V., Wei, J., Chandar, S., Vosoughi, S., Mitamura, T., & Hovy, E. (2021). A survey of data augmentation approaches for NLP. In C. Zong, F. Xia, W. Li, & R. Navigli (Eds.), Findings of the Association for Computational Linguistics: ACL-IJCNLP (pp. 968–988). Association for Computational Linguistics.
Fergadiotis, G., Gorman, K., & Bedrick, S. (2016). Algorithmic classification of five characteristic types of paraphasias. American Journal of Speech-Language Pathology, 25(4S), S776–S787.
Fergadiotis, G., Kapantzoglou, M., Kintz, S., & Wright, H. H. (2019). Modeling confrontation naming and discourse informativeness using structural equation modeling. Aphasiology, 33(5), 544–560.
Fergadiotis, G., & Wright, H. H. (2011). Lexical diversity for adults with and without aphasia across discourse elicitation tasks. Aphasiology, 25(11), 1414–1430.
Forbes, M., Fromm, D., Holland, A., & MacWhinney, B. (2014). EVAL: A tool for clinicians from AphasiaBank [Paper presentation]. Clinical Aphasiology Conference, St. Simons Island, GA, United States.
Fraser, K., Rudzicz, F., Graham, N., & Rochon, E. (2013). Automatic speech recognition in the diagnosis of primary progressive aphasia. Proceedings of the Fourth Workshop on Speech and Language Processing for Assistive Technologies, 47–54. https://www.aclweb.org/anthology/W13-3909
Gale, R., Bird, J., Wang, Y., van Santen, J., & Prud'hommeaux, E., Dolata, J., & Asgari, M. (2021). Automated scoring of tablet-administered expressive language tests. Frontiers in Psychology, 12, Article 668401.
Gale, R. C., Fleegle, M., Fergadiotis, G., & Bedrick, S. (2022). The Post-Stroke Speech Transcription (PSST) Challenge. Proceedings of the RaPID Workshop—Resources and ProcessIng of Linguistic, Para-Linguistic and Extra-Linguistic Data from People with Various Forms of Cognitive/Psychiatric/Developmental Impairments—Within the 13th Language Resources and Evaluation Conference, 41–55. https://aclanthology.org/2022.rapid-1.6
Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural networks and the bias/variance dilemma. Neural Computation, 4(1), 1–58.
Goodglass, H. (1993). Understanding aphasia. Academic Press.
Goodglass, H., & Wingfield, A. (Eds.). (1997). Anomia: Neuroanatomical and cognitive correlates. Academic Press.
Hickin, J., Best, W., Herbert, R., Howard, D., & Osborne, F. (2001). Treatment of word retrieval in aphasia: Generalisation to conversational speech. International Journal of Language & Communication Disorders, 36(Suppl. 1), 13–18.
Kaplan, E., Goodlgass, H., & Weintraub, S. (2001). Boston Naming Test (2nd ed.). Lippincott Williams & Wilkins.
Kertesz, A. (2012). Western Aphasia Battery–Revised [Data set]. American Psychological Association.
Kudo, T., & Richardson, J. (2018). SentencePiece: A simple and language independent subword tokenizer and detokenizer for Neural Text Processing. Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, 66–71.
Le, D., Licata, K., & Mower Provost, E. (2018). Automatic quantitative analysis of spontaneous aphasic speech. Speech Communication, 100, 1–12.
Le, D., Licata, K., & Provost, E. M. (2017). Automatic paraphasia detection from aphasic speech: A preliminary study. Proceedings of Interspeech 2017, 294–298.
Le, D., & Provost, E. M. (2016). Improving automatic recognition of aphasic speech with AphasiaBank. Proceedings of Interspeech 2016, 2681–2685.
Levelt, W. J. M. (1999). Models of word production. Trends in Cognitive Sciences, 3(6), 223–232.
Levelt, W. J. M., Roelofs, A., & Meyer, A. S. (1999). A theory of lexical access in speech production. Behavioral and Brain Sciences, 22(1), 1–38.
Liu, Y., & Lapata, M. (2019). Text summarization with pretrained encoders. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 3730–3740.
Lowerre, T. B. (1976). The Harpy speech recognition system [PhD thesis, Carnegie Mellon University]. https://stacks.stanford.edu/file/druid:rq916rn6924/rq916rn6924.pdf
MacDonald, M. C., Pearlmutter, N. J., & Seidenberg, M. S. (1994). The lexical nature of syntactic ambiguity resolution. Psychological Review, 101(4), 676–703.
MacWhinney, B. (2000). The CHILDES project: Tools for analyzing talk (3rd ed.). Erlbaum.
MacWhinney, B., Fromm, D., Forbes, M., & Holland, A. (2011). AphasiaBank: Methods for studying discourse. Aphasiology, 25(11), 1286–1307.
Malvern, D., Richards, B., Chipere, N., & Durán, P. (2004). Lexical diversity and language development: Quantification and assessment. Palgrave Macmillan UK.
Martin, N. (2017). Disorders of word production. In I. Papathanasiou & P. Coppens (Eds.), Aphasia and related neurogenic communication disorders (2nd ed., pp. 169–195). Jones & Bartlett Learning.
Mayer, J., & Murray, L. (2003). Functional measures of naming in aphasia: Word retrieval in confrontation naming versus connected speech. Aphasiology, 17(5), 481–497.
McKinney-Bock, K., & Bedrick, S. (2019). Classification of semantic paraphasias: Optimization of a word embedding model. In Proceedings of the 3rd Workshop on Evaluating Vector]?> Space Representations for NLP (pp. 52–62). https://www.aclweb.org/anthology/W19-2007
McNemar, Q. (1947). Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika, 12(2), 153–157.
Miller, J., & Iglesias, A. (2012). Systematic Analysis of Language Transcripts (SALT), Research Version 2012 [Computer software]. SALT Software.
Pai, S., Sachdeva, N., Sachdeva, P., & Shah, R. R. (2020). Unsupervised paraphasia classification in aphasic speech. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop (pp. 13–19).
Pashek, G. V., & Tompkins, C. A. (2002). Context and word class influences on lexical retrieval in aphasia. Aphasiology, 16(3), 261–286.
Peng, Y., Yan, S., & Lu, Z. (2019). Transfer learning in biomedical natural language processing: An evaluation of BERT and ELMo on ten benchmarking datasets. Proceedings of the 18th BioNLP Workshop and Shared Task, 58–65.
Perez, M., Aldeneh, Z., & Provost, E. M. (2020). Aphasic speech recognition using a mixture of speech intelligibility experts. Proceedings of Interspeech 2020, 4986–4990.
Rabin, L., Barr, W., & Burton, L. (2005). Assessment practices of clinical neuropsychologists in the United States and Canada: A survey of INS, NAN, and APA division 40 members. Archives of Clinical Neuropsychology, 20(1), 33–65.
Richardson, J. D., Hudspeth Dalton, S. G., Fromm, D., Forbes, M., Holland, A., & MacWhinney, B. (2018). The relationship between confrontation naming and story gist production in aphasia. American Journal of Speech-Language Pathology, 27(1S), 406–422.
Roach, A., Schwartz, M. F., Martin, N., Grewal, R. S., & Brecher, A. (1996). The Philadelphia Naming Test: Scoring and rationale. Clinical Aphasiology, 24, 121–133.
Saffran, E. M., Berndt, R. S., & Schwartz, M. F. (1989). The quantitative analysis of agrammatic production: Procedure and data. Brain and Language, 37(3), 440–479.
Salem, A. C., Gale, R., Casilio, M., Fleegle, M., Fergadiotis, G., & Bedrick, S. (2023). Refining semantic similarity of paraphasias using a contextual language model. Journal of Speech, Language, and Hearing Research, 66(1), 206–220.
Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019). DistilBERT, a distilled version of BERT: Smaller, faster, cheaper and lighter. ArXiv.
Schwartz, B. (2020). Google: BERT now used on almost every English query. Search Engine Land. https://searchengineland.com/google-bert-used-on-almost-every-english-query-342193
Schwartz, M., Dell, G., Martin, N., Gahl, S., & Sobel, P. (2006). A case-series test of the interactive two-step model of lexical access: Evidence from picture naming. Journal of Memory and Language, 54(2), 228–264.
Simmons-Mackie, N., Threats, T. T., & Kagan, A. (2005). Outcome assessment in aphasia: A survey. Journal of Communication Disorders, 38(1), 1–27.
Strauss, E., Sherman, E. M. S., & Spreen, O. (2006). Language tests. In E. M. S. Sherman, E. Strauss, & O. Spreen (Eds.), A compendium of neuropsychological tests: Administration, norms, and commentary (3rd ed.). Oxford University Press.
Tabor, W., Juliano, C., & Tanenhaus, M. K. (1997). Parsing in a dynamical system: An attractor-based account of the interaction of lexical and structural constraints in sentence processing. Language and Cognitive Processes, 12(2–3), 211–271.
The Language Archive. (2021). ELAN (Version 6.2) [Computer software]. https://archive.mpi.nl/tla/elan
Thompson, C. K., Lange, K. L., Schneider, S. L., & Shapiro, L. P. (1997). Agrammatic and non-brain-damaged subjects' verb and verb argument structure production. Aphasiology, 11(4–5), 473–490.
Thompson, C. K., Shapiro, L. P., Tait, M. E., Jacobs, B., Schneider, S. L., & Ballard, K. (1995). Complexity in the comprehension of wh-movement structures in agrammatic Broca's aphasia: Evidence from eyetracking. Brain and Language, 91(1), 124–125.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention is all you need. Proceedings of the 31st International Conference on Neural Information Processing Systems, 6000–6010.
Walker, G. M., & Schwartz, M. F. (2012). Short-form Philadelphia Naming Test: Rationale and empirical evaluation. American Journal of Speech-Language Pathology, 21(2), S140–S153.
Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M., Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite, Y., Plu, J., Xu, C., Le Scao, T., Gugger, S., & Rush, A. (2020). Transformers: State-of-the-art natural language processing. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, 38–45.
Zaheer, M., Guruganesh, G., Dubey, A., Ainslie, J., Alberti, C., Ontanon, S., Pham, P., Ravula, A., Wang, Q., Yang, L., & Ahmed, A. (2020). Big Bird: Transformers for longer sequences. Advances in Neural Information Processing Systems, 33, 17,283–17,297. https://proceedings.neurips.cc/paper_files/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf

Information & Authors

Information

Published In

Journal of Speech, Language, and Hearing Research
Volume 66Number 1211 December 2023
Pages: 4949-4966
PubMed: 37931137

History

  • Received: Feb 15, 2023
  • Revised: Jul 28, 2023
  • Accepted: Aug 27, 2023
  • Published online: Nov 6, 2023
  • Published in issue: Dec 11, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland
Robert C. Gale
Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland
Mikala Fleegle
Department of Speech & Hearing Sciences, Portland State University, OR
Department of Speech & Hearing Sciences, Portland State University, OR
Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland

Notes

Disclosure: The authors have declared that no competing financial or nonfinancial interests existed at the time of publication.
Correspondence to Alexandra C. Salem: [email protected]
Editor-in-Chief: Julie A. Washington
Editor: Stephen M. Wilson

Metrics & Citations

Metrics

Article Metrics
View all metrics



Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

For more information or tips please see 'Downloading to a citation manager' in the Help menu.

View Options

Sign In Options

ASHA member? If so, log in with your ASHA website credentials for full access.

Member Login

View options

PDF

View PDF

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share