No AccessJournal of Speech, Language, and Hearing ResearchResearch Article1 Feb 1992

Vocal Tract Area Function Estimation From Midsagittal Dimensions With CT Scans and a Vocal Tract Cast

Modeling the Transition With Two Sets of Coefficients

    The generation of area functions from measurements of the sagittal section is an important step in the study of the relation between vocal tract geometry and speech acoustics. We present a new model to perform this transformation, inspired by the αβ model of Heinz & Stevens (1965). Our model is based on analysis of a vocal tract cast for large sagittal dimensions and for small sagittal dimensions on CT scans of the vocal tract constriction zones for the three cardinal vowels [i, a, u] of French. We extracted two sets of coefficients, appropriate for large and small sagittal dimensions respectively. We then compared the predictions of the model with those of other models from the literature. Finally, the usefulness of this dual coefficient procedure for the acoustic simulation of vowels was tested using sagittal sections generated by an acoustic model of the vocal tract.

    References

    • Badin, P., & Fant, G. (1984). Notes on vocal tract computation..Speech Transmission Laboratory–Quarterly Progress and Status Report, 2/3, 53–108. University of Stockholm.
    • Baer, T., Gore, J. C., Graeco, L. C., & Nye, P. W. (1988). .Vocal tract dimensions obtained from magnetic resonances images..Journal of Acoustical Society of America, 84(Suppl. 1), S125.
    • Boé, L. J., Perrier, P., & Ballly, G. (in press). The geometric vocal tract variables controlled for vowel production: Proposals for constraining acoustic–to–articulatory inversion..Journal of Phonetics.
    • Chiba, T., & Kajiyama, M. (1941). The vowel: Its nature and structure.Tokyo:Tokyo–Kaiseisan Publishing.
    • Dart, S. N. (1987). Bibliography of X‐ray studies of speech..UCLA Working Papers in Phonetics, 66, 1–97.
    • Fant, G. (1960). Acoustic theory of speech production., S–Graven–hage:Mouton.
    • Fant, G. (1964). Formants and cavities..Proceedings of the Fifth International Congress of Phonetic Sciences, (pp. 120–141). MÜnster, Basel:Karger.
    • Feng, G. (1986). Modélisation acoustique et traitement du signal de parole. Le cas des voyelles nasales [Acoustic modeling and treatment of the speech signal: Nasal vowels]., Unpublished doctoral dissertation, Institut National Polytechnique de Grenoble.University of Grenoble, France.
    • Harshman, R., Ladefoged, P., & Goldstein, L. (1977). Factor analyses of tongue shapes..Journal of Acoustical Society of America, 62, 693–707.
    • Hassan, O., & Perrier, P. (1988). Etude des macro–sensibilités acoustiques pour les voyelles cardinales du français [A study of acoustic macrosensibilities for cardinal vowels in French]..Bulletin du Laboratoire de la Communication Pariée, 2,11–29, University of Grenoble.
    • Heinz, J. M., & Stevens, K. N. (1965). On the relations between lateral cineradlographs, area functions, and acoustic spectra of speech..Proceedings of the Fifth International Congress of Acoustic, A44.Liège.
    • Johansson, C., Sundberg, J., Wilbrand, H., & Ytterbergh, C. (1983). From sagittal distance to area..Speech Transmission Laboratory–Quarterly Progress and Status Report, 4, 39–49, University of Stockholm.
    • Klrltanl, S., Tatenaka, E., & Sawashlma, M. (1978). Computer tomography of the vocal tract..Annual Bulletin of the Research Institute of Logopedics and Phoniatrics, 12, 1–4, University of Tokyo.
    • Llndblom, B. E. F., & Sundberg, J. E. F. (1971). Acoustical consequences of lip, tongue, jaw and larynx movement..Journal of Acoustical Society of America, 50, 1166–1179.
    • Maeda, S. (1972). On the conversion of vocal tract X‐ray data into formant frequencies.Murray Hill, NJ:Bell Laboratories.
    • Maeda, S. (1979). An articulatory model of the tongue based on a statistical analysis..Journal of Acoustical Society of America, 65(Suppl. 1), S22.
    • Maeda, S. (1988). Improved articulatory model..Journal of Acoustical Society of America, 84(Suppl. 1), S146.
    • Majid, R., Abry, C., Boë, L. J., & Perrier, P. (1987). Contribution à la classification articulatori–acoustique des voyelles: Etude des macro–sensibilités à l’aide d’un modèle articulatoire [Contribution to the articulatory–acoustic classification of vowels: A study of macrosensibilities using an articulatory model]..Proceedings of the 11th International Congress of Phonetic Sciences, 2, 348–351. Tallin.
    • Mermelsteln, P. (1978). Difference limens of formant frequencies of steady–state and consonant–bound vowels..Journal of Acoustical Society of America, 63, 572–580.
    • Mrayatl, M. (1976). Contribution aux études sur la production de la parole. Modèle électrique du conduit vocal avec pertes, du conduit nasal et de la source vocale. Etudes de leurs interactions. Relations entre dispositions articulatoires et caractéristiques acoustiques [Contribution to studies on speech production., Electric model of the vocal and nasal tracts with losses. Study of the void tract source coupling and of the relationships between articulatory shapes and acoustic parameters]. Thèse d’Etat, Institut National Polytechnique de Grenoble.University of Grenoble.
    • Perrier, P., & Boë, L. J. (1989). Passage de la coupe sagittale à la fonction d’aire [From the sagittal view to area function]..Journal dAcoustique, 2, 59–67.
    • Rokkaku, M., Hashlmoto, K., Imalzuml, S., Niimi, S., & Klrltanl, S. (1986) . Measurements of the three–dimensional shape of the vocal tract based on the magnetic resonance imaging technique..Annual Bulletin of the Research Institute of Logopedics and Phoniatrics, 20, 47–54, University of Tokyo.
    • Sanchez, H., & Boë, L. J. (1984). De la coupe sagittale à la fonction d’aire [From the sagittal view to area function]..Bulletin de l’Institut de Phonétique de Grenoble, 13, 1–24, University of Grenoble.
    • Simon, P. (1967). Les consonnes françaises. Mouvements et positions de l’articulation à la lumière de la radiocinémathographie [French consonants, movements and geometric targets:A cinera–diographic study]..Paris:Klincksieck.
    • Stevens, K. N. (1972). The quantal nature of speech: Evidence from articulatory–acoustic data..E. David & P. Denes(Eds.), Human communication: A unified view (pp. 51–66), New York:McGraw Hill.
    • Sundberg, J. (1969). On the problem of obtaining area function from lateral X‐ray pictures of the vocal tract..Speech Transmission Laboratory–Quarterly Progress and Status Report, 1, 43–45, University of Stockholm.
    • Sundberg, J., Johansson, C., Wilbrand, H., & Ytterbergh, C. (1987). From sagittal distance to area. A study of transverse, vocal tract cross–sectional area..Phonetica, 44, 76–90.
    • Wood, S. (1979). A radiographic analysis of constriction for vowels..Journal of Phonetics, 7, 25–43.
    • Wu, H. Y., Badin, P., Cheng, Y. M., & Guérin, B. (1987). Simulation du conduit vocal: Réalisation de la variation continue de longueur dans un modèle de KELLY–LOCHBAUM. Effets de l’échantillonnage spatial de la fonction d’aire [Vocal tract simulation with the KELLY–LOCHBAUM model integrating variations of vocal tract length. Study of the consequences of the spatial sampling of the area function]..Bulletin du Laboratoire de la Communication Parlée, 1,1–27, University of Grenoble.

    Additional Resources