No access
Research Article
7 March 2025

Vocal Fold Kinematics and Convergent–Divergent Oscillatory Glottis: Basic Insights Using Mucosal Wave Modeling and Synthetic Kymograms

Publication: Journal of Speech, Language, and Hearing Research
Newly Published
Pages 1-16

Abstract

Purpose:

Owing to mucosal waves, the oscillatory glottis is ideally expected to be convergent during opening and divergent during closing. However, this does not necessarily hold for voice disorders. Here, we pave the way for recognizing COnvergent–DIvergent (CODI) waveforms quantitatively and study the kinematic conditions in which they occur.

Method:

We simulated 3,125 laryngoscopic glottal waveforms using a kinematic vocal fold (VF) model and synthetic kymograms. We independently varied the oscillatory amplitudes of the upper and lower VF margins, AU and AL (0.1 to 1.1 mm), vertical phase difference (VPD; 0° to 125°), glottal halfwidth HW (−0.05 to 1.2 mm), and prephonatory glottal convergence angle ψCVG (−15° to 35°) to simulate normal and disordered conditions. We introduced the upper and lower margin quotients, QU and QL, quantifying the proportion of time when the upper margin is at the glottal edge during the opening, and when the lower margin is at the glottal edge during the closing, respectively. A CODI waveform was defined as the case when QU = QL = 1.

Results:

The likelihood of obtaining the CODI waveform was highest when AU and AL were similar, ψCVG was close to 0, HW was below 0.45 mm, and VPD was larger than 50°. In 88% of the simulated cases, the waveforms did not fulfill the CODI conditions. In these cases, either the lower margin was hidden during some portion of the closing phase or the upper margin was not at the glottal edge during some portion of the opening phase.

Conclusion:

The study provides the basis for a better understanding of the variability of glottal waveforms and the appearance of mucosal waves related to VF kinematics.

Get full access to this article

View all available purchase options and get full access to this article.

References

Aichinger, P., Kumar, S. P., Lehoux, S., & Švec, J. G. (2021). Artificial high-speed videos of normal and dysphonic vocal fold vibration. In C. Manfredi (Ed.), Models and Analysis of Vocal Emissions for Biomedical Applications - 12th International Workshop, MAVEBA 2021 (pp. 93–96). Firenze University Press.
Aichinger, P., Kumar, S. P., Lehoux, S., & Švec, J. G. (2022). Simulated laryngeal high-speed videos for the study of normal and dysphonic vocal fold vibration. Journal of Speech, Language, and Hearing Research, 65(7), 2431–2445.
Alku, P., Švec, J. G., Vilkman, E., & Šram, F. (2000). Analysis of voice production in breathy, normal and pressed phonation by comparing inverse filtering and videokymography. In B. Yuan, T. Huang, & X. Tang (Eds.), Proceedings of the International Conference on Spoken Language Processing (pp. 885–888). China Military Friendship Publish.
Baer, T. (1975). Investigation of phonation using excised larynxes [Doctoral dissertation]. Massachusetts Institute of Technology.
Berke, G. S., & Gerratt, B. R. (1993). Laryngeal biomechanics: An overview of mucosal wave mechanics. Journal of Voice, 7(2), 123–128.
Berry, D. A., Montequin, D. W., & Tayama, N. (2001). High-speed digital imaging of the medial surface of the vocal folds. The Journal of the Acoustical Society of America, 110(5), 2539–2547.
Berry, D. A., Verdolini, K., Montequin, D. W., Hess, M. M., Chan, R. W., & Titze, I. R. (2001). A quantitative output-cost ratio in voice production. Journal of Speech, Language, and Hearing Research, 44(1), 29–37.
Boessenecker, A., Berry, D. A., Lohscheller, J., Eysholdt, U., & Doellinger, M. (2007). Mucosal wave properties of a human vocal fold. Acta Acustica United with Acustica, 93(5), 815–823.
Bulusu, S., Kumar, S. P., Švec, J. G., & Aichinger, P. (2019). Extracting vocal fold kinematic parameters from videokymograms via simulation of clinically observed data. In C. Manfredi (Ed.), Models and Analysis of Vocal Emissions for Biomedical Applications—11th International Workshop, MAVEBA 2019 (pp. 141–144). Firenze University Press.
Bulusu, S., Kumar, S. P., Švec, J. G., & Aichinger, P. (2021). Fitting synthetic to clinical kymographic images for deriving kinematic vocal fold parameters: Application to left-right vibratory phase differences. Biomedical Signal Processing and Control, 63, Article 102253.
Chhetri, D. K., & Rafizadeh, S. (2014). Young's modulus of canine vocal fold cover layers. Journal of Voice, 28(4), 406–410.
Chhetri, D. K., Zhang, Z. Y., & Neubauer, J. (2011). Measurement of Young's modulus of vocal folds by indentation. Journal of Voice, 25(1), 1–7.
DeJonckere, P. H., & Lebacq, J. (2022). Vocal fold collision speed in vivo: The effect of loudness. Journal of Voice, 36(5), 608–621.
Deliyski, D. D., Petrushev, P. P., Bonilha, H. S., Gerlach, T. T., Martin-Harris, B., & Hillman, R. E. (2008). Clinical implementation of laryngeal high-speed videoendoscopy: Challenges and evolution. Folia Phoniatrica et Logopaedica, 60(1), 33–44.
Döllinger, M., Tayama, N., & Berry, D. A. (2005). Empirical eigenfunctions and medial surface dynamics of a human vocal fold. Methods of Information in Medicine, 44(3), 384–391.
Döllinger, M., Zhang, Z., Schoder, S., Šidlof, P., Tur, B., & Kniesburges, S. (2023). Overview on state-of-the-art numerical modeling of the phonation process. Acta Acustica, 7, Article 25.
Echternach, M., Döllinger, M., Köberlein, M., Kuranova, L., Gellrich, D., & Kainz, M. A. (2020). Vocal fold oscillation pattern changes related to loudness in patients with vocal fold mass lesions. Otolaryngology–Head and Neck Surgery, 49(1).
Farnsworth, D. W. (1940). High-speed motion pictures of the human vocal cords. Bell Laboratories Record, 18(7), 203–208.
Geng, B., Pham, N., Xue, Q., & Zheng, X. D. (2020). A three-dimensional vocal fold posturing model based on muscle mechanics and magnetic resonance imaging of a canine larynx. 147(4), 2597–2608.
George, N. A., de Mul, F. F., Qiu, Q., Rakhorst, G., & Schutte, H. K. (2008a). Depth-kymography: High-speed calibrated 3D imaging of human vocal fold vibration dynamics. Physics in Medicine and Biology, 53(10), 2667–2675.
George, N. A., de Mul, F. F. M., Qiu, Q., Rakhorst, G., & Schutte, H. K. (2008b). New laryngoscope for quantitative high-speed imaging of human vocal folds vibration in the horizontal and vertical direction. Journal of Biomedical Optics, 13(06), Article 064024.
Hasegawa, H., Nakagawa, T., Noguchi, K., & Tokuda, I. T. (2024). Experimental study on inspiratory phonation using physical model of the vocal folds. Journal of Voice, 38(4), 826–835.
Henrich, N., Hess, M., Schade, G., Neubauer, J., Mantay, C., & Kirchhoff, T. (2003). The transillumination technique and its applications: First results. In G. Schade, F. Müller, T. Wittenberg, & M. Hess (Eds.), AQL 2003 Hamburg: Proceeding Papers for the Conference Advances in Quantitative Laryngology, Voice and Speech Research. IRB Verlag.
Herbst, C. T., Qiu, Q., Schutte, H. K., & Švec, J. G. (2011). Membranous and cartilaginous vocal fold adduction in singing. The Journal of the Acoustical Society of America, 129(4), 2253–2262.
Hertegard, S. (2005). What have we learned about laryngeal physiology from high-speed digital videoendoscopy? Current Opinion in Otolaryngology & Head and Neck Surgery, 13(3), 152–156.
Hess, M. M., & Ludwigs, M. (2000). Strobophotoglottographic transillumination as a method for the analysis of vocal fold vibration patterns. Journal of Voice, 14(2), 255–271.
Hess, M. M., Ludwigs, M., Kobler, J. B., & Schade, G. (2002). Imaging of the larynx—Extending the use of stroboscopy-related techniques. Logopedics Phoniatrics Vocology, 27(2), 50–58.
Hirano, M. (1974). Morphological structure of the vocal cord as a vibrator and its variations. Folia Phoniatrica et Logopaedica, 26(2), 89–94.
Hirano, M. (1975). Phonosurgery: Basic and clinical investigations. Otologia, 21(Suppl. 1), 239–442.
Hirano, M. (1981). Clinical examination of voice (Vol. 5). Springer-Verlag.
Hirano, M., & Bless, D. M. (1993). Videostroboscopic examination of the larynx. Singular Publishing Group.
Hiroto, I. (1968). Vibration of vocal cords: An ultra high-speed cinematographic study [Film]. Department of Otolaryngology, Kurume University.
Hiroto, I. (1981). Introductory remarks. In K. N. Stevens & M. Hirano (Eds.), Vocal fold physiology (pp. 3–9). University of Tokyo Press.
Hoppe, U., Rosanowski, F., Döllinger, M., Lohscheller, J., Schuster, M., & Eysholdt, U. (2003). Glissando: Laryngeal motorics and acoustics. Journal of Voice, 17(3), 370–376.
Inagi, K., Connor, N. P., Suzuki, T., Ford, C. N., Bless, D. M., & Nakajima, M. (2002). Glottal configuration, acoustic, and aerodynamic changes induced by variation in suture direction in arytenoid adduction procedures. Annals of Otology, Rhinology & Laryngology, 111(10), 861–870.
Isshiki, N. (1980). Recent advances in phonosurgery. Folia Phoniatrica et Logopaedica, 32(2), 119–154.
Isshiki, N. (1998). Vocal mechanics as the basis for phonosurgery. The Laryngoscope, 108(12), 1761–1766.
Jiang, J. J., Chang, C. I., Raviv, J. R., Gupta, S., Banzali, F. M., Jr., & Hanson, D. G. (2000). Quantitative study of mucosal wave via videokymography in canine larynges. The Laryngoscope, 110(9), 1567–1573.
Jiang, J. J., Zhang, Y., Kelly, M. P., Bieging, E. T., & Hoffman, M. R. (2008). An automatic method to quantify mucosal waves via videokymography. The Laryngoscope, 118(8), 1504–1510.
Kendall, K. A., & Leonard, R. J. (2010). Laryngeal evaluation: Indirect laryngoscopy to high-speed digital imaging. Thieme.
Kirsh, E., Zacharias, S. R. C., de Alarcon, A., & Khosla, S. (2017). Vertical phase difference and glottal efficiency in musical theater and opera singers. Journal of Voice, 31(1), 130.e19–130.e25.
Krausert, C. R., Olszewski, A. E., Taylor, L. N., McMurray, J. S., Dailey, S. H., & Jiang, J. J. (2011). Mucosal wave measurement and visualization techniques. Journal of Voice, 25(4), 395–405.
Kumar, S. P., Phadke, K. V., Vydrová, J., Novozámský, A., Zita, A., Zitová, B., & Švec, J. G. (2020). Visual and automatic evaluation of vocal fold mucosal waves through sharpness of lateral peaks in high-speed videokymographic images. Journal of Voice, 34(2), 170–178.
Kumar, S. P., & Švec, J. G. (2019). Kinematic model for simulating mucosal wave phenomena on vocal folds. Biomedical Signal Processing and Control, 49, 328–337.
Kunduk, M., Doellinger, M., McWhorter, A. J., & Lohscheller, J. (2010). Assessment of the variability of vocal fold dynamics within and between recordings with high-speed imaging and by phonovibrogram. The Laryngoscope, 120(5), 981–987.
Lasota, M., Šidlof, P., Maurerlehner, P., Kaltenbacher, M., & Schoder, S. (2023). Anisotropic minimum dissipation subgrid-scale model in hybrid aeroacoustic simulations of human phonation. The Journal of the Acoustical Society of America, 153(2), 1052–1063.
Lee, J.-C., Wang, S.-G., Sung, E.-S., Bae, I.-H., Kim, S.-T., & Lee, Y.-W. (2019). Clinical practicability of a newly developed real-time digital kymographic system. Journal of Voice, 33(3), 346–351.
Lehoux, S., Popeil, L., & Švec, J. G. (2024). Laryngeal and acoustic analysis of chest and head registers extended across a three-octave range: A case study. Journal of Voice, 38(5), 1035–1054.
Li, S., Scherer, R. C., Wan, M. X., & Wang, S. P. (2012). The effect of entrance radii on intraglottal pressure distributions in the divergent glottis. The Journal of the Acoustical Society of America, 131(2), 1371–1377.
Li, S., Scherer, R. C., Wan, M. X., Wang, S. P., & Wu, H. H. (2006). The effect of glottal angle on intraglottal pressure. The Journal of the Acoustical Society of America, 119(1), 539–548.
Li, L., Yu, Z., Maytag, A. L., & Jiang, J. J. (2015). Quantitative study for the surface dehydration of vocal folds based on high-speed imaging. Journal of Voice, 29(4), 403–409.
Lohscheller, J., Švec, J. G., & Döllinger, M. (2013). Vocal fold vibration amplitude, open quotient, speed quotient and their variability along glottal length: Kymographic data from normal subjects. Logopedics Phoniatrics Vocology, 38(4), 182–192.
Maguluri, G., Mehta, D., Kobler, J., Park, J., & Iftimia, N. (2019). Synchronized, concurrent optical coherence tomography and videostroboscopy for monitoring vocal fold morphology and kinematics. Biomedical Optics Express, 10(9), 4450–4461.
Malinowski, J., Niebudek-Bogusz, E., Just, M., Morawska, J., Racino, A., Hoffman, J., Barańska M., Kowalczyk M. M., & Pietruszewska W. (2021). Laryngeal high-speed videoendoscopy with laser illumination: A preliminary report. Polish Journal of Otolaryngology, 75(6), 1–10.
Matsushita, H. (1975). The vibratory mode of the vocal folds in the excised larynx. Folia Phoniatrica, 27(1), 7–18.
McGowan, R. S. (1990). An analogy between the mucosal waves of the vocal folds and wind waves on water. Haskins Laboratories Status Report on Speech Research, 101(102), 243–249.
Mehta, D. D., Deliyski, D. D., Quatieri, T. F., & Hillman, R. E. (2011). Automated measurement of vocal fold vibratory asymmetry from high-speed videoendoscopy recordings. Journal of Speech, Language, and Hearing Research, 54(1), 47–54.
Mehta, D. D., Zanartu, M., Quatieri, T. F., Deliyski, D. D., & Hillman, R. E. (2011). Investigating acoustic correlates of human vocal fold vibratory phase asymmetry through modeling and laryngeal high-speed videoendoscopy. The Journal of the Acoustical Society of America, 130(6), 3999–4009.
Moore, P., & von Leden, H. (1958). Dynamic variations of the vibratory pattern in the normal larynx. Folia Phoniatrica et Logopaedica, 10(4), 205–238.
Oren, L., Dembinski, D., Gutmark, E., & Khosla, S. (2014). Characterization of the vocal fold vertical stiffness in a canine model. Journal of Voice, 28(3), 297–304.
Patel, R. R., Döllinger, M., Jakubass, B., Pinhack, H., Katz, U., & Semmler, M. (2024). Analyzing vocal fold frequency dynamics using high-speed 3D laser video endoscopy. The Laryngoscope, 134(7), 3267–3276.
Patel, R. R., Sundberg, J., Gill, B., & Lã, F. M. B. (2022). Glottal airflow and glottal area waveform characteristics of flow phonation in untrained vocally healthy adults. Journal of Voice, 36(1), 140.e1–140.e21.
Phadke, K. V., Vydrová, J., Domagalská, R., & Švec, J. G. (2017). Evaluation of clinical value of videokymography for diagnosis and treatment of voice disorders. European Archives of Oto-Rhino-Laryngology, 274(11), 3941–3949.
Poburka, B. J., Patel, R. R., & Bless, D. M. (2017). Voice-Vibratory Assessment with Laryngeal Imaging (VALI) form: Reliability of rating stroboscopy and high-speed videoendoscopy. Journal of Voice, 31(4), 513.e1–513.e14.
Qiu, Q., & Schutte, H. K. (2006). A new generation videokymography for routine clinical vocal fold examination. The Laryngoscope, 116(10), 1824–1828.
Qiu, Q., & Schutte, H. K. (2007). Real-time kymographic imaging for visualizing human vocal-fold vibratory function. Review of Scientific Instruments, 78(2), Article 024302.
Regner, M. F., Robitaille, M. J., & Jiang, J. J. (2010). Interspecies comparison of mucosal wave properties using high-speed digital imaging. The Laryngoscope, 120(6), 1188–1194.
Ricci-Maccarini, A., Mozzanica, F., Fantini, M., Dadduzio, S., Bergamini, G., Fustos, R., & Schindler, A. (2024). Validity, reliability and reproducibility of the VLS parameters form for the collection of videolaryngostroboscopic basic findings. European Archives of Oto-Rhino-Laryngology, 281(5), 2489–2497.
Sadeghi, H., Kniesburges, S., Kaltenbacher, M., Schutzenberger, A., & Döllinger, M. (2019). Computational models of laryngeal aerodynamics: Potentials and numerical costs. Journal of Voice, 33(4), 385–400.
Samlan, R. A., & Story, B. H. (2011). Relation of structural and vibratory kinematics of the vocal folds to two acoustic measures of breathy voice based on computational modeling. Journal of Speech, Language, and Hearing Research, 54(5), 1267–1283.
Samlan, R. A., Story, B. H., Lotto, A. J., & Bunton, K. (2014). Acoustic and perceptual effects of left-right laryngeal asymmetries based on computational modeling. Journal of Speech, Language, and Hearing Research, 57(5), 1619–1637.
Sataloff, R. T. (1992). The human voice. Scientific American, 267(6), 108–115.
Scherer, R. C., Shinwari, D., De Witt, K. J., Zhang, C., Kucinschi, B. R., & Afjeh, A. A. (2001). Intraglottal pressure profiles for a symmetric and oblique glottis with a divergence angle of 10 degrees. The Journal of the Acoustical Society of America, 109(4), 1616–1630.
Schönharl, E. (1960). Die Stroboskopie in der praktischen Laryngologie [Stroboscopy in practical laryngology]. Georg Thieme Verlag.
Semmler, M., Döllinger, M., Patel, R. R., Ziethe, A., & Schützenberger, A. (2018). Clinical relevance of endoscopic three-dimensional imaging for quantitative assessment of phonation. The Laryngoscope, 128(10), 2367–2374.
Semmler, M., Kniesburges, S., Birk, V., Ziethe, A., Patel, R., & Döllinger, M. (2016). 3D reconstruction of human laryngeal dynamics based on endoscopic high-speed recordings. IEEE Transactions on Medical Imaging, 35(7), 1615–1624.
Shaw, H. S., & Deliyski, D. D. (2008). Mucosal wave: A normophonic study across visualization techniques. Journal of Voice, 22(1), 23–33.
Smith, S. (1954). Remarks on the physiology of the vibrations of the vocal cords. Folia Phoniatrica et Logopaedica, 6(3), 166–178.
Šram, F., Švec, J. G., & Vydrová, J. (2020). Videokymography. In A. am Zehnhoff-Dinnesen, B. Wiskirska-Woznica, K. Neumann, & T. Nawka (Eds.), Phoniatrics I: Fundamentals–voice disorders–disorders of language and hearing development (pp. 379–387). Springer Verlag. https://doi.org/10.1007/978-3-662-46780-0
Story, B. H. (2002). An overview of the physiology, physics and modeling of the sound source for vowels. Acoustical Science and Technology, 23(4), 195–206.
Sundberg, J., & Högset, C. (2001). Voice source differences between falsetto and modal registers in counter tenors, tenors and baritones. Logopedics Phoniatrics Vocology, 26(1), 26–36.
Švec, J. G. (2000). On vibration properties of human vocal folds: Voice registers, bifurcations, resonance characteristics, development and application of videokymography [Doctoral dissertation, University of Groningen]. https://irs.ub.rug.nl/ppn/240208714
Švec, J. G., & Schutte, H. K. (1996). Videokymography: High-speed line scanning of vocal fold vibration. Journal of Voice, 10(2), 201–205.
Švec, J. G., & Schutte, H. K. (2012). Kymographic imaging of laryngeal vibrations. Current Opinion in Otolaryngology & Head and Neck Surgery, 20(6), 458–465.
Švec, J. G., Schutte, H. K., Chen, C. J., & Titze, I. R. (2023). Integrative insights into the myoelastic–aerodynamic theory and acoustics of phonation. Scientific tribute to Donald G. Miller. Journal of Voice, 37(3), 305–313.
Švec, J. G., Šram, F., & Schutte, H. K. (2007). Videokymography in voice disorders: What to look for? Annals of Otology, Rhinology & Laryngology, 116(3), 172–180.
Tanabe, M., Kitajima, K., Gould, W. J., & Lambiase, A. (1975). Analysis of high-speed motion pictures of the vocal folds. Folia Phoniatrica, 27(2), 77–87.
Thomson, S. L., Mongeau, L., & Frankel, S. H. (2005). Aerodynamic transfer of energy to the vocal folds. The Journal of the Acoustical Society of America, 118(3), 1689–1700.
Tigges, M., Wittenberg, T., Mergell, P., & Eysholdt, U. (1999). Imaging of vocal fold vibration by digital multi-plane kymography. Computerized Medical Imaging and Graphics, 23(6), 323–330.
Timcke, R., von Leden, H., & Moore, P. (1959). Laryngeal vibrations: Measurements of the glottic Wave: Part II—Physiologic variations. Archives of Otolaryngology, 69(4), 438–444.
Titze, I. R. (1988). The physics of small-amplitude oscillation of the vocal folds. The Journal of the Acoustical Society of America, 83(4), 1536–1552.
Titze, I. R. (1997). Overview and application of phonation models. In T. Wittenberg, P. Mergell, M. Tigges, & U. Eysholdt (Eds.), Advances in quantitative laryngoscopy (pp. 103–110). Universitäts-HNO-Klinik Göttingen.
Titze, I. R. (2006a). The myoelastic aerodynamic theory of phonation. National Center for Voice and Speech.
Titze, I. R. (2006b). Theoretical analysis of maximum flow declination rate versus maximum area declination rate in phonation. Journal of Speech, Language, and Hearing Research, 49(2), 439–447.
Titze, I. R., Jiang, J. J., & Hsiao, T. Y. (1993). Measurement of mucosal wave propagation and vertical phase difference in vocal fold vibration. Annals of Otology, Rhinology & Laryngology, 102(1), 58–63.
Tsutsumi, M., Isotani, S., Pimenta, R. A., Dajer, M. E., Hachiya, A., Tsuji, D. H., Tayama N., Yokonishi H., Imagawa H., Yamauchi A., Takano S., Sakakibara K. I., & Montagnoli A. N. (2017). High-speed videolaryngoscopy: Quantitative parameters of glottal area waveforms and high-speed kymography in healthy individuals. Journal of Voice, 31(3), 282–290.
Vahabzadeh-Hagh, A. M., Zhang, Z. Y., & Chhetri, D. K. (2017a). Quantitative evaluation of the in vivo vocal fold medial surface shape. Journal of Voice, 31(4), 513.e15–513.e23.
Vahabzadeh-Hagh, A. M., Zhang, Z. Y., & Chhetri, D. K. (2017b). Three-dimensional posture changes of the vocal fold from paired intrinsic laryngeal muscles. Laryngoscope, 127(3), 656–664.
Vanhecke, F., Lebacq, J., Moerman, M., Manfredi, C., Raes, G.-W., & Dejonckere, P. H. (2016). Physiology and acoustics of inspiratory phonation. Journal of Voice, 30(6), 769.e9–769.e18.
Wittenberg, T., Tigges, M., Mergell, P., & Eysholdt, U. (2000). Functional imaging of vocal fold vibration: digital multislice high-speed kymography. Journal of Voice, 14(3), 422–442.
Woo, P. (1996). Quantification of videostroboscopic findings—Measurement of the normal glottal cycle. The Laryngoscope, 106(Suppl. 79), 1–27.
Woo, P. (2020). Objective measures of stroboscopy and high-speed video. Advances in Oto-Rhino-Laryngology, 85, 25–44.
Yamauchi, A., Imagawa, H., Yokonishi, H., Sakakibara, K. I., & Tayama, N. (2024). Multivariate analysis of vocal fold vibrations in normal speakers using high-speed digital imaging. Journal of Voice, 38(1), 10–17.
Yamauchi, A., Yokonishi, H., Imagawa, H., Sakakibara, K. I., Nito, T., Tayama, N., & Yamasoba, T. (2016). Visualization and estimation of vibratory disturbance in vocal fold scar using high-speed digital imaging. Journal of Voice, 30(4), 493–500.
Yokonishi, H., Imagawa, H., Sakakibara, K.-I., Yamauchi, A., Nito, T., Yamasoba, T., & Tayama, N. (2016). Relationship of various open quotients with acoustic property, phonation types, fundamental frequency, and intensity. Journal of Voice, 30(2), 145–157.
Yumoto, E., & Kadota, Y. (1998). Pliability of the vocal fold mucosa in relation to the mucosal upheaval during phonation. Archives of Otolaryngology—Head and Neck Surgery, 124(8), 897–902.
Zhang, Z. (2016). Mechanics of human voice production and control. The Journal of the Acoustical Society of America, 140(4), 2614–2635.
Zhang, Z. (2023). Vocal fold vertical thickness in human voice production and control: A review. Journal of Voice. Advance online publication.
Zheng, X., Mittal, R., & Bielamowicz, S. (2011). A computational study of asymmetric glottal jet deflection during phonation. The Journal of the Acoustical Society of America, 129(4), 2133–2143.
Zita, A., Greško, Š., Novozámský, A., Šorel, M., Zitová, B., Švec, J. G., & Vydrová, J. (2023). Automatic estimation of mucosal waves lateral peak sharpness – Modern approach. In IS&T International Symposium on Electronic Imaging 2023 (Vol. 35, pp. 1–5). Society for Imaging Science and Technology.
Zörner, S., Kaltenbacher, M., & Döllinger, M. (2013). Investigation of prescribed movement in fluid-structure interaction simulation for the human phonation process. Computers & Fluids, 86(100), 133–140.

Information & Authors

Information

Published In

Journal of Speech, Language, and Hearing Research
Newly Published
Pages: 1-16
PubMed: 40053877

History

  • Received: Apr 16, 2024
  • Revised: Oct 11, 2024
  • Accepted: Nov 5, 2024
  • Published online: Mar 7, 2025

Permissions

Request permissions for this article.

Authors

Affiliations

Voice Research Lab, Department of Experimental Physics, Faculty of Science, Palacký University, Olomouc, Czechia
Author Contributions: Conceptualization, Formal analysis, Funding acquisition, Methodology, Project administration, Resources, Supervision, Validation, Visualization, Writing – original draft, and Writing – review & editing.
Department of Biomedical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India
Author Contributions: Data curation, Formal analysis, Funding acquisition, Methodology, Resources, Software, Supervision, Visualization, Writing – original draft, and Writing – review & editing.
Department of Mathematical Analysis and Applications of Mathematics, Faculty of Science, Palacký University, Olomouc, Czechia
Author Contributions: Formal analysis, Visualization, and Writing – review & editing.
Sandhanakrishnan Ravichandran https://orcid.org/0009-0005-5567-1738
Department of Biomedical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India
Author Contributions: Data curation, Formal analysis, Investigation, Methodology, Software, Visualization, and Writing – review & editing.
Voice Research Lab, Department of Experimental Physics, Faculty of Science, Palacký University, Olomouc, Czechia
Author Contributions: Data curation, Formal analysis, Investigation, Methodology, Software, Validation, Visualization, and Writing – review & editing.

Notes

Disclosure: Jan G. Švec is the Head of the Voice Research Laboratory at Palacký University in Olomouc; serves as an associate research scientist at the Voice and Hearing Centre Prague, Medical Healthcom, Ltd.; and is the inventor of the method of videokymography. S. Pravin Kumar completed his postdoctoral work at the Voice Research Laboratory at Palacký University in Olomouc. Sarah Lehoux received a scholarship from the Palacký University in Olomouc. Ondřej Vencálek is the chair of the Czech Statistical Society. The authors have declared that no other competing financial or nonfinancial interests existed at the time of publication.
Correspondence to Jan G. Švec: [email protected]
Sandhanakrishnan Ravichandran is currently at TUM School of Natural Sciences, Technical University of Munich, Munich, Germany. Sarah Lehoux is currently at the Department of Head and Neck Surgery, University of California, Los Angeles, CA.
Editor-in-Chief: Cara E. Stepp
Editor: Shaheen N. Awan

Metrics & Citations

Metrics

Article Metrics
View all metrics



Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

For more information or tips please see 'Downloading to a citation manager' in the Help menu.

View Options

Sign In Options

ASHA member? If so, log in with your ASHA website credentials for full access.

Member Login

View options

PDF

View PDF

Full Text

View Full Text

Figures

Tables

Media

Share

Share

Copy the content Link

Share